
PLATFORM-
AS-A-SERVICE
RED HAT OPENSHIFT 3.11 AND PURE STORAGE

REFERENCE ARCHITECTURE

2

TABLE OF CONTENTS

INTRODUCTION ... 4

PLATFORM-AS-A-SERVICE .. 4

PaaS Defined .. 4

Requirements of a PaaS Platform .. 5

PaaS – Bare Bones ... 6

COMPONENTS, PRE-REQUISITES, AND CONFIGURATION .. 7

Pure Storage FlashArray ... 7

Pure Storage FlashBlade .. 9

Pure1® .. 11

Evergreen™ Storage .. 11

Red Hat OpenShift for Containers .. 12

Pure Service Orchestrator ... 12

High-Level Design .. 13

Software Version Details ... 14

Compute .. 15

Networking ... 15

DEPLOYMENT ... 16

Pure Storage Red Hat Best Practices ... 16

Configuring Docker Storage ... 16

Configure Docker Registry Storage ... 17

PERSISTENT STORAGE ... 19

Pure Service Orchestrator Installation ... 19

SIMPLE POD DEPLOYMENT WITH A PURE STORAGE

FLASHARRAY PERSISTENT VOLUME ... 23

Persistent Volume Claim ... 23

Application Pod .. 25

3

SIMPLE MULTIPLE POD DEPLOYMENT WITH A PURE STORAGE

FLASHBLADE PERSISTENT VOLUME ... 28

Persistent Volume Claim ... 28

Ensure NFS Write Access .. 29

Application Pod .. 30

Additonal Application Pod ... 31

UPDATING PURE SERVICE ORCHESTRATOR CONFIGURATION .. 33

ADDING CLUSTER NODES TO OPENSHIFT ... 34

CONCLUSION ... 35

APPENDIX 1: ANSIBLE DEPLOYMENT INVENTORY ... 36

APPENDIX 2: OPENSHIFT CATALOG TO DEPLOY SIMPLE APPLICATIONS 37

APPENDIX 3: OPENSHIFT DEPLOYMENT LINKS .. 43

ABOUT THE AUTHOR ... 44

4

PLATFORM-AS-A-SERVICE

PaaS Defined
Cloud computing has widened its scope to include platforms for developing and implementing custom applications,

a term called “Platform as a Service” (PaaS). PaaS applications are also suggested as on-demand, web-based, or

Software-as-a-Service (SaaS) options. However, a comprehensive definition is:

Platform as a Service (PaaS) is the delivery of a computing platform and solution stack as a service. PaaS

offerings facilitate deployment of applications without the cost and complexity of buying and managing the

underlying hardware and software and provisioning hosting capabilities, providing all of the facilities required

to support the complete life cycle of building and delivering web applications and services entirely available on

the Internet.

PaaS offerings may include facilities for application design, application development, testing, deployment, and

hosting. This includes the scope of application services such as team collaboration, web service integration and

marshalling, database integration, security, scalability, storage, and developer community facilitation, among

others. These services may be provisioned as an integrated solution offering over the web.

In simple terms, PaaS provides a runtime environment for cloud applications. It refers to the almost negligible need to

buy standalone software, hardware, and all related services, since these are available on the Internet in a more “public

cloud” manner. In a private cloud setting, one would still need to buy hardware and software to build the infrastructure,

but PaaS will help manage and utilize it in a manner that meets cloud standards. In the next section, we will discuss the

cloud standards that any PaaS platform must implement. Additionally, in private cloud scenarios, these services might

be available through an Intranet or other means.

After looking at the PaaS platforms available today, it appears that most true PaaS platforms provide a runtime

environment for applications developed for a cloud. However, some PaaS providers target the development

environment and provide an entire solution stack that can be used to build, test, deploy, and manage code in the

INTRODUCTION

This document provides a practical reference architecture to help integrate
Pure Storage® products into the deployment of a Red Hat® OpenShift® Container
Platform. The underlying infrastructure for this platform will be based on a bare-
metal deployment that can be scaled easily to whatever size is required. It is
assumed that the reader understands how to deploy a bare-metal OpenShift
solution, as details will only be provided for the Pure Storage integration pieces.
Links to details on OpenShift deployments can be found in the Appendix of
this document.

5

cloud. Those providing development and testing services look more like SaaS – offering development or testing

tools in the cloud. Although this is still a topic of debate, for the purposes of this paper we consider PaaS to be a

runtime environment for cloud applications, and we will discuss the requirements and architecture of a PaaS platform

in that context.

Requirements of a PaaS Platform
As stated above, the main objective of PaaS is to improve the efficiency of the cloud and maximize its benefits.

Keeping this objective in mind, below are the requirements of an ideal PaaS platform:

•	 High Scalability and On-Demand Provisioning Infrastructure-as-a-Service (IaaS) provides scaling and on-

demand hardware provisioning. In terms of cloud, this scaling is possible until the last hardware resource is

available in cloud. Likewise, PaaS is expected to scale applications across the hardware, and the extent of

scaling can be stretched to include the last hardware resource available for deployment. This provides users

of PaaS a feeling of infinite scalability. In addition, the application provisioning should be an automated task

that needs no IT intervention for deployment and delivery.

•	 High Availability PaaS platforms should provide a runtime environment for applications that features failover

and load balancing capabilities. The important question is “how is it different from a traditional clustered, load-

balanced environment?” The answer is that failover and load balancing capabilities should be scoped across

the cloud rather than a few dedicated machines, as is the case in a traditional environment. This is over and

above the hardware availability provided by IaaS. Thus, by deploying a PaaS platform, application availability

is guaranteed in the event of application runtime breakdown and not infrastructure breakdown.

•	 High Reliability Reliability is often used interchangeably with availability. Though the motive of both is to

provide a failover, there is a fine line that distinguishes one from the other. This difference can be made clear

by means of an example: In the case of a business service that calculates an individual’s federal and state

taxes, let’s first assume it is deployed in a cloud which provides only availability. In this scenario, whenever

there is a request for a tax calculation, the cloud will ensure that some service is always up and running to

receive this request. However, other processes running on the same computing environment could cause

the service to take a long time to respond and the request to time out. In this case, the request initiator

would see an error page. Now, had the cloud been reliable, it would have sensed that the service was not

responding within the specified time and would have tried to execute it in another computing environment.

In this case, the user would have received a response and not an error. A successful PaaS platform should

provide this reliability to all services/components deployed and running on it.

•	 Optimal Usage One of the core requirements of any cloud computing platform is optimal usage of

resources. In the case of PaaS, optimization specifically applies to resources utilized for executing

applications. To apply resource optimization, the PaaS platform should have components that monitor

application execution and usage. Another purpose of monitoring is to provide chargeback to users. Let us

see how this requirement differs from its applicability to a traditional deployment. In traditional deployments,

applications are load balanced using traditional hardware and software load balancers that monitor a few

6

application servers and distribute the load using various load balancing strategies such as “round robin” or

“least recently used.” In the PaaS context, since PaaS monitors the runtime for the individual services of an

application, load balancing should be more granular. Here PaaS should monitor each service/component

within the application based on different parameters (number of requests being serviced, CPU usage of

the VM running the machine, etc.) and then decide on the best candidate to service the incoming request.

PaaS is spread across the cloud, so this load balancing should not be limited to a few machines but to the

entire cloud where the PaaS exists. The other optimization scenario where PaaS distinguishes itself from a

traditional deployment is that of a service orchestration. Wherever services are executed in a workflow or

process-based manner, PaaS should keep track of the current state of the workflow or process to ensure

that work completed during execution of a process is not wasted if the process fails – rather than starting

the process all over. This has the potential to salvage the computing loss due to failure and improve the

efficiency of the cloud.

•	 Auto-Scaling On-demand scaling could be based on a user request or in response to an increased load.

In the latter scenario, the cloud, because of its elastic nature, expands and adds more resources to meet

the increased demand. This requires the PaaS to auto-scale the applications in the newly added

computing resources.

•	 Admin/Management Console and Reports PaaS platforms should include some form of a user interface

through which all application components/services can be tracked and monitored. In the case of private

cloud, this UI may be integrated with the IaaS monitoring/tracking tool. In addition, this UI should have a

provision for requesting additional deployments of applications/services along with access control for the

same. PaaS platforms should also have reporting capabilities to provide statistics related to application

usage, execution, and provisioning. If reporting capabilities are not present in the form of UI, then there

should at least be APIs or web service interfaces that users of PaaS can use to build their own reports.

•	 Multi-OS and Multi-Language Support An organization may have different operating system and

applications written using different languages. PaaS platforms should enable applications which can run on

multiple operating systems (Windows, Linux, etc.) and should be able to run applications created in different

languages (Java, .Net, C++, etc.).

PaaS – Bare Bones
The requirements discussed in the above section comprise both essential and useful-to-have features. Organizations can

choose to have a partial implementation of these features to meet their PaaS requirements, because each organization

may have varying needs with respect to scaling, availability, and reliability. The following are basic requirements of a

homegrown PaaS platform, along with a discussion as to what extent of implementation is needed:

•	 High Scalability & On-Demand Provisioning This is one of the most basic requirements of PaaS for

implementation. However, the scope of scalability could be adjusted to suit the application need under

the cloud. Provisioning of applications has to be on-demand and without human intervention. Without

implementing these two aspects, deploying PaaS would become futile.

7

•	 High Availability This requirement is also imperative, but, depending on the organization’s needs, one

could end up with a low failure threshold. Therefore, if the custom PaaS components that provide availability

are finite, and if they all fail, there is a possibility that the PaaS will fail to accept a request.

•	 High Reliability This requirement can also be exposed to finite points of failure rather than infinite

controllers providing infinite (scope entire cloud) reliability.

•	 Optimal Usage This requirement could be confined to load balancing to give the cloud advantage, but it

must be granular and should be able to load balance individual services rather than the runtimes that these

services run on.

•	 Self-Service Portal Instead of a full-fledged dashboard, one could deliver a simple portal that provides

a UI to request cloud resources, including applications/services deployed in the PaaS. The rest of the

prerequisites may or may not be implemented in a custom PaaS and would depend on the specific needs

of the user organization.

COMPONENTS, PRE-REQUISITES, AND CONFIGURATION

Pure Storage FlashArray
The Pure Storage FlashArray family delivers purpose-built, software-

defined all-flash power and reliability for businesses of every size.

FlashArray is all-flash enterprise storage that is up to 10X faster, more

space and power efficient, more reliable, and far simpler than other

available solutions. Critically, FlashArray also costs less, with a TCO

that's typically 50% lower than traditional performance disk arrays.

FlashArray//X is the first mainstream, 100% NVMe, enterprise-class all-flash array. //X represents a higher performance

tier for mission-critical databases, top-of-rack flash deployments, and Tier 1 application consolidation. //X, at up to

3PB in 6U, with hundred-microsecond range latency and GBs of bandwidth, delivers an unprecedented level of

performance density that makes possible previously unattainable levels of consolidation.

FlashArray//X is ideal for cost-effective consolidation of everything on flash. Whether accelerating a single database,

scaling virtual desktop environments, or powering an all-flash cloud, there is an //X model that fits your needs.

PURITY FOR FLASHARRAY (PURITY//FA 5)

At the heart of every FlashArray is Purity Operating Environment software. Purity//FA5 implements advanced data

reduction, storage management, and flash management features, enabling organizations to enjoy Tier 1 data services

for all workloads, proven 99.9999% availability (inclusive of maintenance and generational upgrades), completely non-

disruptive operations, 2X better data reduction versus alternative all-flash solutions, and the power and efficiency of

DirectFlash™. Moreover, Purity includes enterprise-grade data security, comprehensive data protection options, and

complete business continuity via ActiveCluster multi-site stretch cluster. All these features are included with every array.

8

FLASHARRAY SPECIFICATIONS

*	 Stated //X specifications are applicable to
//X R2 versions, expected availability June,
2018.

**	 Effective capacity assumes HA, RAID,
and metadata overhead, GB-to-GiB
conversion, and includes the benefit
of data reduction with always-on inline
deduplication, compression, and pattern
removal. Average data reduction is
calculated at 5-to-1 and does not include
thin provisioning.

***	 Expected Availability 2H 2018.

†	 Array accepts Pure Storage DirectFlash
Shelf and/or Pure Storage SAS-based
expansion shelf.

††	 Array accepts Pure Storage SAS-based
expansion shelf.

CAPACITY PHYSICAL

//X10 Up to 55 TB / 53.5 TiB
effective capacity**
Up to 20 TB / 18.6 TiB
raw capacity

3U
490 – 600 Watts (nominal – peak)
95 lbs (43.1 kg) fully loaded
5.12” x 18.94” x 29.72” chassis

//X20 Up to 275 TB / 251.8 TiB
effective capacity**
Up to 87 TB / 80.3 TiB
raw capacity††

3U
620 – 688 Watts (nominal – peak)
95 lbs (43.1 kg) fully loaded
5.12” x 18.94” x 29.72” chassis

//X50 Up to 650 TB / 602.8 TiB
effective capacity**
Up to 183 TB / 171 TiB
raw capacity†

3U
620 – 760 Watts (nominal – peak)
95 lbs (43.1 kg) fully loaded
5.12” x 18.94” x 29.72” chassis

//X70 Up to 1.3 PB / 1238.5 TiB
effective capacity**
Up to 366 TB / 320.1 TiB
raw capacity†

3U
915 – 1345 Watts (nominal – peak)
97 lbs (44.0 kg) fully loaded
5.12” x 18.94” x 29.72” chassis

//X90 Up to 3 PB / 3003.1 TiB
effective capacity**
Up to 878 TB / 768.3 TiB
raw capacity†

3U – 6U
1100 – 1570 Watts (nominal – peak)
97 lbs (44 kg) fully loaded
5.12” x 18.94” x 29.72” chassis

DIRECT
FLASH
SHELF

Up to 1.9 PB effective
capacity**
Up to 512 TB / 448.2 TiB
raw capacity

3U
460 - 500 Watts (nominal – peak)
87.7 lbs (39.8kg) fully loaded
5.12” x 18.94” x 29.72” chassis

//X CONNECTIVITY

Onboard Ports (per controller)

•	 2 x 1/10/25 Gb Ethernet
•	 2 x 1/10/25 Gb Ethernet

Replication
•	 2 x 1Gb Management Ports

Host I/O Cards (3 slots/controller)

•	 2-port 10GBase-T Ethernet
•	 2-port 1/10/25 Gb Ethernet
•	 2-port 40 Gb Ethernet
•	 2 Port 50Gb Ethernet

(NVMe-oF Ready)***
•	 2-port 16/32 Gb Fibre Channel

(NVMe-oF Ready)
•	 4-port 16/32 Gb Fibre Channel

(NVMe-oF Ready)

TECHNICAL SPECIFICATIONS*

9

Pure Storage FlashBlade
FlashBlade™ is a new, innovative scale-out storage system designed

to accelerate modern analytics applications while providing best-

of-breed performance in all dimensions of concurrency – including

IOPS, throughput, latency, and capacity. FlashBlade is as simple as it

is powerful, offering elastic scale-out storage services at every layer

alongside DirectFlash™ technology for global flash management.

PURPOSE-BUILT FOR MODERN ANALYTICS

FlashBlade is the industry’s first cloud-era flash purpose-built for modern analytics, delivering unprecedented

performance for big data applications. Its massively distributed architecture enables consistent performance for all

analytics applications using NFS, S3/Object, SMB, and HTTP protocols.

FAST

•	 Elastic performance that

grows with data, up to 17 GB/s

•	 Always-fast, from small to

large files

•	 Massively parallel

architecture from software

to flash

BIG

•	 Petabytes of capacity

•	 Elastic concurrency,

up to 10s of thousands

of clients

•	 10s of billions of objects

and files

SIMPLE

•	 Evergreen™ – don’t rebuy

TBs you already own

•	 “Tuned for Everything”

design, no manual

optimizations required

•	 Scale-out everything

instantly by simply

adding blades

THE FLASHBLADE DIFFERENCE

BLADE

Compute and network integrated

with DirectFlash technology –

each blade can be hot-plugged

into the system for expansion and

performance

PURITY//FB

The heart of FlashBlade, architected

on a massively distributed key-value

pair database for limitless scale and

performance, delivering enterprise-

class data services and management

with simplicity.

ELASTIC FABRIC

Powered by a proprietary object

messaging protocol for fastest

communication to flash, the low-

latency converged fabric delivers

a total bandwidth of 320Gb/s per

chassis with 8x 40GB/s ports.

10

POWER, DENSITY, EFFICIENCY

FlashBlade delivers industry-leading throughput,

IOPS, latency, and capacity – with up to 20x less

space and 10x less power and cooling.

PERFORMANCE

17 GB/s bandwidth

with 15 blades

Up to 1.8M NFS ops/sec

CONNECTIVITY

8x 40Gb/s or

32x 10Gb/s Ethernet

ports / chassis

PHYSICAL

4U

1,800 Watts (nominal

at full configuration)

8 TB BLADE 17 TB BLADE 52 TB BLADE

7 BLADES
98 TBs

Usable

197 TBs

Usable

591 TBs

Usable

15 BLADES
267 TBs

Usable

535 TBs

Usable

1607 TBs

Usable

FLASHBLADE SPECIFICATIONS

* Usable capacity assumes 3:1 data reduction rate. Actual data reduction may vary based on use case.

PURITY FOR FLASHBLADE (PURITY//FB)

FlashBlade is built on the scale-out metadata architecture of Purity for FlashBlade, capable of handling 10s of billions of

files and objects while delivering maximum performance, effortless scale, and global flash management. The distributed

transaction database built into the core of Purity means storage services at every layer are elastic: simply adding blades

grows system capacity and performance, linearly and instantly. Purity//FB supports S3-compliant object store, offering

ultra-fast performance at scale. It also supports File protocol, including NFSv3 and SMB, and offers a wave of new

enterprise features, like snapshots, LDAP, network lock management (NLM), and IPv6, to extend FlashBlade into new

use cases.

11

Pure1®
Pure1, our cloud-based management, analytics, and support platform, expands the self-managing, plug-n-play design

of Pure all-flash arrays with the machine learning predictive analytics and continuous scanning of Pure1 Meta™ to

enable an effortless, worry-free data platform.

PURE1 MANAGE

In the Cloud IT operating model, installing and deploying management software is an oxymoron: you simply login.

Pure1 Manage is SaaS-based, allowing you to manage your array from any browser or from the Pure1 Mobile App –

with nothing extra to purchase, deploy, or maintain. From a single dashboard you can manage all your arrays, with full

visibility on the health and performance of your storage.

PURE1 ANALYZE

Pure1 Analyze delivers true performance forecasting – giving customers complete visibility into the performance and

capacity needs of their arrays – now and in the future. Performance forecasting enables intelligent consolidation and

unprecedented workload optimization.

PURE1 SUPPORT

Pure combines an ultra-proactive support team with the predictive intelligence of Pure1 Meta to deliver unrivaled

support that’s a key component in our proven FlashArray 99.9999% availability. Customers are often surprised and

delighted when we fix issues they did not even know existed.

PURE1 META

The foundation of Pure1 services, Pure1 Meta is global intelligence built from a massive collection of storage array

health and performance data. By continuously scanning call-home telemetry from Pure’s installed base, Pure1 Meta

uses machine learning predictive analytics to help resolve potential issues and optimize workloads. The result is both

a white glove customer support experience and breakthrough capabilities like accurate performance forecasting.

Evergreen™ Storage
Customers can deploy storage once and enjoy a subscription to continuous innovation via Pure’s Evergreen Storage

ownership model: expand and improve performance, capacity, density, and/or features for 10 years or more – all

without downtime, performance impact, or data migrations. Pure has disrupted the industry’s 3-5 year rip-and-replace

cycle by engineering compatibility for future technologies right into its products.

12

Red Hat OpenShift for Containers
Red Hat OpenShift is a layered system designed to expose an underlying Docker-formatted container image and

Kubernetes concepts as accurately as possible, with a focus on easy composition of applications by a developer.

OpenShift Container Platform has a microservices-based architecture of smaller, decoupled units that work together.

It runs on top of a Kubernetes cluster, with data about the objects stored in etcd, a reliable, clustered key-value store.

Those services are broken down by function:

•	 REST APIs, which expose each of the core objects, such as projects, users, pods, services, images, etc.

•	 Controllers, which read those APIs, apply changes to other objects, and report status or write back to

the object.

Users make calls to the REST API to change the state of the system. Controllers use the REST API to read the user’s

desired state, and then try to bring the other parts of the system into sync. For example, when a user requests a build,

they create a “build” object. The build controller sees that a new build has been created, and runs a process on the

cluster to perform that build. When the build completes, the controller updates the build object via the REST API, and

the user sees that their build is complete.

The controller pattern means that much of the functionality in the OpenShift Container Platform is extensible. The way

that builds are run and launched can be customized independently of how images are managed, or how deployments

happen. The controllers are performing the “business logic” of the system, taking user actions and transforming

them into reality. By customizing those controllers or replacing them with your own logic, different behaviours can

be implemented. From a system administration perspective, this also means the API can be used to script common

administrative actions on a repeating schedule. Those scripts are also controllers that watch for changes and act on

these changes accordingly. The OpenShift Container Platform makes the ability to customize the cluster in this way a

first-class behaviour.

To make this possible, controllers leverage a reliable stream of changes to the system to sync their view of the system

with what users are doing. This event stream pushes changes from etcd to the REST API and then to the controllers

as soon as changes occur, so changes can ripple out through the system very quickly and efficiently. However,

since failures can occur at any time, the controllers must also be able to get the latest state of the system at startup

and confirm that everything is in the right state. This resynchronization is important because it means that even if

something goes wrong, the operator can restart the affected components, and the system double checks everything

before continuing. The system should eventually converge to the user’s intent since the controllers can always bring

the system into sync.

Pure Service Orchestrator
Since 2017, Pure Storage has been building seamless integrations with container platforms and orchestration engines

using the plugin model, allowing persistent storage to be leveraged by environments such as Kubernetes.

13

As adoption of container environments moves forward, the device plugin model is not sufficient to deliver the cloud

experience developers are expecting. This is amplified by the fluid nature of modern containerized environments

– where stateless containers are spun up and spun down within seconds and stateful containers have much longer

lifespans, and where some applications require block storage, whilst others require file storage, and a container

environment can rapidly scale to 1000s of containers. These requirements can easily push past the boundaries of

any single storage system.

Pure Service Orchestrator was designed to provide your developers an experience similar to what they expect

they can only get from the public cloud. Pure Service Orchestrator can provide a seamless container-as-a-service

environment that is:

•	 Simple, Automated, and Integrated: Provisions storage on demand, automatically, via policy, and integrates

seamlessly, enabling DevOps and developer-friendly ways to consume storage

•	 Elastic: Allows you to start small and scale your storage environment with ease and flexibility, mixing and

matching varied configurations as your Swarm environment grows

•	 Multi-protocol: Supports both file and block

•	 Enterprise-grade: Delivers the same Tier 1 resilience, reliability, and protection that your mission-critical

applications depend upon for stateful applications in your Kubernetes clusters

•	 Shared: Makes shared storage a viable and preferred architectural choice for next generation, containerized

data centers by delivering a vastly superior experience relative to direct-attached storage alternatives

Pure Service Orchestrator integrates seamlessly with your Kubernetes orchestration environment and functions as a

control-plane virtualization layer that enables container-as-a-service rather than storage-as-a-service.

High-Level Design
The reference architecture used and described in this document, considered to be the minimum for a production level

environment, consists of a single bastion host (also referred to as the Ansible control host), three master hosts, and five

node hosts to run the actual Docker containers for the users. The master nodes run the clustered etcd key-value store.

The node hosts are separated into two classes: infrastructure nodes and app nodes. The infrastructure nodes run the

internal OpenShift Container Platform services, the OpenShift router, and the Local Registry. The remaining three app

nodes host the actual user container processes. There is also a node which runs HAProxy to control access to the

different functions of the OpenShift cluster.

This is shown in the figure on the next page.

14

FIGURE 1. High-level architectural design

Within this reference architecture, we will employ Pure Storage products for several different uses.

Specifically, these will be:

•	 The Docker service storage on each bare-metal node will be created on a block storage volume

presented from Pure Storage FlashArray.

•	 The Docker Registry will be created within an NFS share presented from Pure Storage FlashBlade.

•	 Persistent Storage Volumes (PV) will be made available through the Pure Service Orchestrator plugin

to allow PV claims to be made on block storage from Pure Storage FlashArray and from NFS mount

points presented from Pure Storage FlashBlade.

Software Version Details
This table provides the installed software versions for the different components used in building this

Reference Architecture.

SOFTWARE VERSION

RED HAT ENTERPRISE LINUX 7.5 X86_64 KERNEL-3.10.0-957

OPENSHIFT CONTAINER PLATFORM 3.11.92

KUBERNETES 1.11

15

DOCKER 1.13.1

ANSIBLE 2.6.4

PURE SERVICE ORCHESTRATOR 2.3.0

A subscription to the following Red Hat channels is also required to deploy this reference architecture.

CHANNEL REPOSITORY NAME

RED HAT ENTERPRISE LINUX 7 SERVER (RPMS) RHEL-7-SERVER-RPMS

RED HAT OPENSHIFT CONTAINER PLATFORM 3.11 (RPMS) RHEL-7-SERVER-OSE-3.11-RPMS

RED HAT ENTERPRISE LINUX 7 SERVER – EXTRAS (RPMS) RHEL-7-SERVER-EXTRAS-RPMS

RED HAT ANSIBLE ENGINE 2.6 RPMS FOR RED HAT ENTERPRISE LINUX 7 RHEL-7-SERVER-ANSIBLE-2.6-RPMS

Compute
The role of this Reference Architecture is not to prescribe specific compute platforms for the OpenShift platform,

therefore we are referring to the servers being used in white-box terms. The servers used here have the following

hardware specifications:

•	 Intel® Xeon® E5-2640 v2 @ 2.00GHz

•	 32 vCPU

•	 384 GiB memory

Networking
From a networking perspective, the servers in use have the following connected network interfaces:

•	 1 x 10GbE (management)

•	 1 x dual Mellanox 40GbE (iSCSI data plane)

There is no specific network hardware defined within this document, as this decision is dependent on the actual

implementation performed by the reader.

Within the OpenShift networking layer, this reference architecture uses the default Open vSwitch ‘flat’ pod network.

16

DEPLOYMENT

While it is not in the scope of this document to explain how to deploy the Red Hat OpenShift Container Platform, there

are several deployment elements that need to be explicitly detailed as to the creation of the specific infrastructure that

was used for this reference architecture.

Pure Storage Red Hat Best Practices
To ensure that the FlashArray connections are optimal, it is necessary to install the latest device-mapper-multipath

package as well as the latest iscsi-initiator-utils package, and then enable both the multipath and iscsid daemons, to

ensure they persist after any reboots. More details can be found in the Pure Storage Knowledge Base article on Linux

Recommendations.

It is also advisable to implement the udev rules defined in the Knowledge Base article mentioned above to

ensure optimal performance of your connected Pure Storage volumes.

Configuring Docker Storage
As part of the host preparation stage of an OpenShift deployment, there is a requirement for Docker storage which will

hold, temporarily, containers and images. This is separate from any persistent storage required by applications running

within OpenShift.

The default storage backend for a bare-metal Red Hat Enterprise Linux host is a thin pool on a loopback device,

however, this is not appropriate, or supported, for a production deployment. Therefore, a thin pool logical volume must

be created for each host in the deployment (except the bastion) and Docker must be reconfigured to use this logical

volume on each host.

The following steps should be taken to configure a Pure Storage volume to act as the local Docker storage.

These steps must be implemented on all nodes in the OpenShift cluster.

1.	 Create a host object for the node in the OpenShift cluster using the iSCSI IQN for the host port.

2.	 Create a 20GiB volume on your FlashArray and connect to its associated host.

3.	 Rescan the host to ensure that the new iSCSI volume is available to the operating system.

4.	 Check that the host is connected to the FlashArray iSCSI ports using the iscsiadm command,

ensuring these logins persist over reboot.

5.	 Check the multipath device name for the new iSCSI volume using the multipath command.

For this example we will assume the multipath device created is /dev/dm-3

6.	 Modify the file /etc/sysconfig/docker-storage-setup to contain the following:

cat <<EOF > /etc/sysconfig/docker-storage-setup

DEVS=/dev/dm-3

WRITE_SIGNATURES=true

https://support.purestorage.com/Solutions/Linux/Reference/Linux_Recommended_Settings
https://support.purestorage.com/Solutions/Linux/Reference/Linux_Recommended_Settings

17

VG=docker-vol

EOF

7.	 Run the docker-storage-setup command.

8.	 Reinitialize the docker process.

systemctl stop docker

rm -rf /var/lib/docker/*

systemctl start docker

9.	 Ensure that the thin pool has been created correctly using both the docker info and lvs commands.

Configure Docker Registry Storage
As part of the deployment phase of an OpenShift Container Platform, you must enable a local Docker registry and

define its storage location and configuration.

This registry storage can be located on a local NFS host group directory, an external NFS host, an OpenStack platform

(using the Glance project), or an S3 storage solution (public or private).

Here we give details on how to configure a Pure Storage FlashBlade to provide the backing store for the Docker

Registry using NFS.

NFS DIRECTORY SHARE

The following steps describe how to create an NFS share on FlashBlade and how to use this information in an

OpenShift deployment process.

•	 Create an NFS share from the FlashBlade GUI.

–– Navigate to the Storage > File Systems page:

FIGURE 2. Storage > File Systems screen in the FlashArray GUI

–– Select the icon in the top right of the pane to get the following popup:

18

FIGURE 3. Create File System popup

–– Give a Name for the NFS share and a capacity. Ensure that the Enabled switch is selected on and, if

necessary, add an export rule to ensure that all OpenShift nodes can access this share. In this example,

we are creating a share called openshift with a size of 10GiB.

•	 Temporarily mount your newly created NFS on any server that has access to it, and create a subdirectory

which will be referenced as volume name in the next bullet point. In this case, we will create a directory

called pure-ra.

mount -t nfs <NFS service IP>:/openshift /mnt

mkdir /mnt/pure-ra

chmod a+w /mnt/pure-ra

umount /mnt

•	 Use the information from FlashBlade to populate the OpenShift deployment Ansible inventory file with

the following details (here using values from the above examples):

openshift_hosted_registry_storage_kind=nfs

openshift_hosted_registry_storage_access_modes=['ReadWriteMany']

openshift_hosted_registry_storage_host=<IP address of NFS data service>

openshift_hosted_registry_storage_nfs_directory=/openshift

openshift_hosted_registry_storage_volume_name=pure-ra

openshift_hosted_registry_storage_volume_size=10Gi

•	 After a successful deployment of OpenShift, you will see both a Persistent Volume and a Persistent Volume

Claim have been automatically created using your NFS share:

oc get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS CLAIM STORAGECLASS REASON AGE

pure-ra-volume 100Gi RWX Retain Bound default/pure-ra-claim 6h

19

oc get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE

pure-ra-claim Bound pure-ra-volume 100Gi RWX 6h

PERSISTENT STORAGE

Within the OpenShift framework, we can use Pure Storage backends to provide persistent storage in the form of

Persistent Volumes for Persistent Volume Claims issued by developers.

The Pure Service Orchestrator plugin provides both file- and block-based Storage Classes, provisioned from either

FlashArray or FlashBlade storage devices.

To make these StorageClasses available to your OpenShift cluster, you must install the Pure Service

Orchestrator OpenShift plugin.

Pure Service Orchestrator Installation
Installation and configuration of PSO is simple and requires only a few steps, which are described in the Docker Store

location of the Pure Service Orchestrator.

However, there are a couple of actions that need to be performed on every k8s worker node in your cluster before

performing the installation:

•	 Ensure the latest multipath software package is installed and enabled.

•	 Ensure the /etc/multipath.conf file exists and contains the Pure Storage stanza as described in the

Pure Storage Linux Best Practices.

PLUGIN INSTALLATION

Pure Service Orchestrator manages the installation of all required files across your OpenShift environment by using a

DaemonSet to perform cross-node installation. The DaemonSet runs a pod on each appropriate node in the cluster,

which copies the required files in the right path on the host for the kubelet to access. It will keep the config updated

and ensure that files are installed safely. Perform the following steps to install Pure Service Orchestrator:

1.	 Install Helm1 in your OpenShift deployment

2.	 Add the pure repo to Helm:

oc adm policy add-role-to-user cluster-admin "system:serviceaccount:${TILLER_NAMESPACE}:tiller"

helm repo add pure http://purestorage.github.io/helm-charts

helm repo update

helm search pure-k8s-plugin

1	 Details of a Red Hat approved method to install Helm can be found at https://blog.openshift.com/getting-started-helm-openshift/

https://store.docker.com/community/images/purestorage/k8s
https://store.docker.com/community/images/purestorage/k8s
https://blog.openshift.com/getting-started-helm-openshift/

20

3.	 Update the PSO configuration file

To enable Pure Service Orchestrator to communicate with your Pure Storage backend arrays, it is required

to update a configuration file to reflect the access information for the backend storage solutions. The file is

called values.yaml and needs to contain the management IP address of the backend devices, together with

a valid, privileged, API token for each device. Additionally, an NFS Data VIP address must be supplied for

each FlashBlade.

Take a copy of the values.yaml provided by the Helm Chart2 and update the arrays parameters in the

configuration file with your site-specific information, as shown in the following example:

arrays:

 FlashArrays:

 - MgmtEndPoint: "1.2.3.4"

 APIToken: "a526a4c6-18b0-a8c9-1afa-3499293574bb"

 Labels:

 rack: "22"

 env: "prod"

 - MgmtEndPoint: "1.2.3.5"

 APIToken: "b526a4c6-18b0-a8c9-1afa-3499293574bb"

 FlashBlades:

 - MgmtEndPoint: "1.2.3.6"

 APIToken: "T-c4925090-c9bf-4033-8537-d24ee5669135"

 NfsEndPoint: "1.2.3.7"

 Labels:

 rack: "7b"

 env: "dev"

 - MgmtEndPoint: "1.2.3.8"

 APIToken: "T-d4925090-c9bf-4033-8537-d24ee5669135"

 NfsEndPoint: "1.2.3.9"

 Labels:

 rack: "6a"

Ensure that the values you enter are correct for your own Pure Storage devices. Additionally, in the

orchestrator section of the yaml file, change the orchestrator name for openshift and amend the flexPath

parameter as follows:

orchestrator:

 name: openshift

2	 Or download from https://raw.githubusercontent.com/purestorage/helm-charts/master/pure-k8s-plugin/values.yaml

https://raw.githubusercontent.com/purestorage/helm-charts/master/pure-k8s-plugin/values.yaml

21

3.	 Configure labels

You will see in the above example for the arrays that entries have one or more labels assigned to them.

Labels can be used to filter the list of backends. Labels are arbitrary (key, value) pairs that can be added to

any backend, as seen in the example above. More than one backend can have the same (key, value) pair.

When creating a new volume, label (key = value) pairs can be specified to filter the list of backends to a given

set. The plugin also provides the following well known labels that can be used. There is no requirement to add

this into your values.yaml file.

•	 purestorage.com/backend: Holds the value file for FlashBlades and block for FlashArrays.

•	 purestorage.com/hostname: Holds the host name of the backend.

•	 purestorage.com/id: Holds the ID of the backend.

•	 purestorage.com/family: Holds either FlashArray or FlashBlade

4.	 Create Security Context

As this plugin needs to mount external volumes to containers, there is a requirement under OpenShift security

rules for the provisioner pod created by the plugin to use the hostPath volume plugin. To do this without having

to grant everyone access to privileged SCCs, such as privileged or hostaccess, it is recommended to create a

new SCC and grant this to all users.3

Define the new SCC in a YAML file:

kind: SecurityContextConstraints

apiVersion: v1

metadata:

 name: hostpath

allowPrivilegedContainer: true

allowHostDirVolumePlugin: true

runAsUser:

 type: RunAsAny

seLinuxContext:

 type: RunAsAny

fsGroup:

 type: RunAsAny

supplementalGroups:

 type: RunAsAny

Now use oc create and pass the YAML file to create the new SCC:

oc create -f hostpath-scc.yaml

3	 https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html#use-the-hostpath-volume-plugin

https://docs.openshift.com/container-platform/3.11/admin_guide/manage_scc.html#use-the-hostpath-volume-plugin

22

Finally, grant access to this SCC to all users

oc adm policy add-scc-to-group hostpath system:authenticated

This is only one option. There are many other ways to ensure the PSO plugin works under different SCC

configurations, and you must ensure that the method you choose is appropriate to your specific environment.

5.	 Install the plugin

To ensure proper security is maintained within your OpenShift cluster, it is recommended that the plugin be

installed in its own project. Create this project using the following command:

oc new-project pso

It is advisable to perform a ‘dry run’ installation to ensure that your YAML file is correctly formatted:

helm install --namespace pso pure-storage-driver pure/pure-k8s-plugin -f <your_own_dir>/<your_own_

values>.yaml --dry-run –-debug

Perform the actual install. Unless otherwise specified, the install will occur in the default namespace.

helm install --namespace pso pure-storage-driver pure/pure-k8s-plugin -f <your_own_dir>/<your_own_

values>.yaml

The values set in your own YAML will overwrite any default values, but the --set option can also take

precedence over any value in the YAML, for example:

helm install --namespace pso pure-storage-driver pure/pure-k8s-plugin -f <your_own_dir>/<your own

values>.yaml –-set flasharray.sanType=FC,namespace.pure=k8s_xxx

It is recommended to use the values.yaml file rather than the --set option for ease of use, especially should

modifications be required to your configuration in the future.

VALIDATE INSTALLATION

After running the installer, we can check to ensure that all the necessary components have been correctly installed

using the following commands:

oc get deployments

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE

pure-provisioner 1 1 1 1 2m

oc get sc

NAME TYPE

pure pure-provisioner

23

pure-block pure-provisioner

pure-file pure-provisioner

oc get pods

NAME READY STATUS RESTARTS AGE

pure-flex-9sphg 1/1 Running 0 1h

pure-flex-b7bt9 1/1 Running 0 1h

pure-flex-dhc4d 1/1 Running 0 1h

pure-flex-f5xtk 1/1 Running 0 1h

pure-flex-kcp4n 1/1 Running 0 1h

pure-flex-rg8q6 1/1 Running 0 1h

pure-flex-rqsxq 1/1 Running 0 1h

pure-flex-xmn72 1/1 Running 0 1h

pure-provisioner-2785090122-78kmf 1/1 Running 0 1h

oc get daemonset

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE-SELECTOR AGE

pure-flex 8 8 8 8 8 node-role.kubernetes.io/compute=true 1h

We can see the dynamic provisioner running as a single pod and multiple pure-flex pods, one for each compute node

in the cluster. These multiple pods are making sure the Pure Storage FlexVolume driver is healthy on each node, these

being coordinated by the pure-flex daemonset.

SIMPLE POD DEPLOYMENT WITH A PURE STORAGE FLASHARRAY PERSISTENT VOLUME

To validate that Pure Service Orchestrator plugin has been configured and installed correctly, we can create a simple

pod with the Nginx application using a persistent volume from the configured Pure Storage backend.

Provided here are two files that we can use to validate the installation and show a working application deployment.

These are YAML files, firstly defining a Pure Storage-based persistent volume claim, and secondly defining the Nginx

application using the persistent volume. It is recommended that each application is deployed in its own project,

therefore for this simple test we will first create a new project.

oc new-project nginx

Persistent Volume Claim
Create a file called nginx-pvc.yaml:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pure-claim

spec:

24

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 10Gi

 storageClassName: pure-block

Notice that the storageClassName is pure-block, which ensures we get a PV from a FlashArray backend. If we used

pure as the value here this would also provide a FlashArray based PV.

Execute the following command:

oc create -f nginx-pvc.yaml

This will create a PVC called pure-claim and the Pure Storage Dynamic Provisioner will automatically create a

Persistent Volume to back this claim and be available to a pod that requests it.

The PV created for the PVC can be seen using the following command:

oc get pvc

NAME STATUS VOLUME CAPACITY ACCESSMODES STORAGECLASS AGE

pure-claim Bound pvc-5eaa66a7-fb23-11e7-aa74-ecf4bbe57354 10Gi RWO pure 1h

and from this, we can cross-reference to the actual volume created on FlashArray.

FIGURE 4. FlashArray GUI Storage > Volumes pane

We can see that the volume name matches the PV name with a prefix of k8s-. This prefix is the pure:namespace

parameter in the Helm values.yaml file, which defaults to k8s. Looking more closely at the volume on FlashArray,

we see that it is also not yet connected to any host, as no pod is using the volume.

25

FIGURE 5. FlashArray GUI Storage > Volumes pane

Application Pod
Create a file called nginx-pod.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: nginx

spec:

 volumes:

 - name: pure-vol

 persistentVolumeClaim:

 claimName: pure-claim

 containers:

 - name: nginx

 image: nginx

 volumeMounts:

 - name: pure-vol

 mountPath: /data

 ports: pure

 - containerPort: 80

Execute the following command:

oc create -f nginx-pod.yaml

This will create a pod called nginx that will run the Nginx image, and the FlexVolume driver will mount the PV created

earlier to the directory /data within the pod.

26

A lot of information can be gathered regarding the newly created pod – some useful information is highlighted below:

oc describe pod nginx

Name: nginx

Namespace: nginx

Node: sn1-pool-c07-07.puretec.purestorage.com/10.21.200.117

Start Time: Mon, 18 Mar 2019 08:50:28 -0800

Labels: <none>

Annotations: openshift.io/scc=privileged

Status: Running

IP: 10.131.0.41

Containers:

 nginx:

 Container ID: docker://9623179a0427b4253cc9a71f629cc236d172f06936809117af26758f1e6b4073

 Image: nginx

 Image ID: docker-pullable://docker.io/nginx@

sha256:2ffc60a51c9d658594b63ef5acfac9d92f4e1550f633a3a16d898925c4e7f5a7

 Port: 80/TCP

 State: Running

 Started: Mon, 18 Mar 2019 08:50:35 -0800

 Ready: True

 Restart Count: 0

 Environment: <none>

 Mounts:

 /data from pure-vol (rw)

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-dcbmd (ro)

Conditions:

 Type Status

 Initialized True

 Ready True

 ContainerReady True

 PodScheduled True

Volumes:

 pure-vol:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

 ClaimName: pure-claim

 ReadOnly: false

 default-token-dcbmd:

 Type: Secret (a volume populated by a Secret)

27

 SecretName: default-token-dcbmd

 Optional: false

QoS Class: BestEffort

Node-Selectors: node-role.kubernetes.io/compute=true

Tolerations: <none>

Events: <none>

We can see which node the pod has been created on, and this can be confirmed from the FlashArray GUI.

FIGURE 6. FlashArray GUI Storage > Volumes pane

We can confirm the Nginx application is working by performing a simple web call to the pod IP address:

curl http://10.131.0.41

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

 body {

 width: 35em;

 margin: 0 auto;

 font-family: Tahoma, Verdana, Arial, sans-serif;

 }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and

working. Further configuration is required.</p>

28

<p>For online documentation and support please refer to

nginx.org.

Commercial support is available at

nginx.com.</p>

<p>Thank you for using nginx.</p>

</body>

</html>

SIMPLE MULTIPLE POD DEPLOYMENT WITH A PURE STORAGE FLASHBLADE PERSISTENT VOLUME

Here we are going to validate that the Pure Service Orchestrator plugin has been installed and configured correctly and

creates NFS-based persistent volumes on a Pure Storage FlashBlade backend that can be shared by multiple pods.

Provided here are files that we can use to validate the installation and show an end-to-end example. These are YAML

files, firstly defining a Pure Storage-based persistent volume claim, secondly defining the Nginx application using

the persistent volume, and finally defining an additional pod to connect to the same PVC. Here are are still using the

previously created project nginx, but you can confirm you are still within this project by using the following command:

oc project nginx

Persistent Volume Claim
Create a file called nginx-nfs-pvc.yaml:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pure-nfs-claim

spec:

 accessModes:

 - ReadWriteMany

 resources:

 requests:

 storage: 10Gi

 storageClassName: pure-file

Note that we are specifically calling the storageClassName to be pure-file to ensure we get a PV created on a

FlashBlade backend.

29

Execute the following command:

oc create -f nginx-nfs-pvc.yaml

This will create a PVC called pure-nfs-claim and the Pure Storage Dynamic Provisioner will automatically create a

Persistent Volume to back this claim and be available to a pod that requests it.

The PV created for the PVC can be seen using the following command:

oc get pvc

NAME	 STATUS	 VOLUME	 CAPACITY	 ACCESSMODES	 STORAGECLASS	 AGE

pure-nfs-claim	 Bound	 pvc-6bf82e5c-39a9-11e8-aab7-ecf4bbe57354	 10Gi	 RWX	 pure-file	 3m

and from this, we can cross-reference to the actual volume created on FlashBlade.

FIGURE 7. FlashArray GUI Storage > File Systems pane

Again we can see that the filesystem name matches the PV name with a prefix of k8s-.

Ensure NFS Write Access
By default, SELinux does not allow writing from pods to external NFS shares, therefore the following commands

need to run on each node:

setsebool -P virt_sandbox_use_nfs on

setsebool -P virt_use_nfs on

A simple way to do this is to run the following Ansible command from your Ansible Bastion host:

ansible -i <openshift deployment inventory file> nodes -m raw -a ‘setsebool -P virt_sandbox_use_nfs on;

setsebool -P virt_use_nfs on'

30

Application Pod
Create a file called nginx-pod-nfs.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: nginx-nfs

spec:

 volumes:

 - name: pure-nfs

 persistentVolumeClaim:

 claimName: pure-nfs-claim

 containers:

 - name: nginx-nfs

 image: nginx

 volumeMounts:

 - name: pure-nfs

 mountPath: /data

 ports:

 - name: pure

 containerPort: 80

Execute the following command:

oc create -f nginx-pod-nfs.yaml

This will create a pod called nginx-pod-nfs that will run the Nginx image and the FlexVolume driver will mount the

PV created earlier to the directory /data within the pod.

A lot of information can be gathered regarding the newly created pod; some useful information is highlighted below:

oc describe pod nginx-nfs

Name: nginx-nfs

Namespace: nginx

Node: sn1-pool-c07-10.puretec.purestorage.com/10.21.200.120

Start Time: Mon, 18 Mar 2019 12:18:55 -0800

Labels: <none>

Annotations: openshift.io/scc=privileged

Status: Running

IP: 10.131.2.66

31

Containers:

 nginx-nfs:

 Container ID: docker://e4467f968215163f0501c56b210e2a79a3a9a9ce1c5a641333ea70ecd783856f

 Image: nginx

 Image ID: docker-pullable://docker.io/nginx@

sha256:d0468eaec1ef818af05f85ac00e484fd5a2ae75dd567dc9f7ccf5f68a60351fb

 Port: 80/TCP

 State: Running

 Started: Mon, 18 Mar 2019 12:19:01 -0800

 Ready: True

 Restart Count: 0

 Environment: <none>

 Mounts:

 /usr/share/nginx/html from pure-nfs (rw)

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-nskqk (ro)

Conditions:

 Type Status

 Initialized True

 Ready True

 ContainerReady True

 PodScheduled True

Volumes:

 pure-nfs:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

 ClaimName: pure-nfs-claim

 ReadOnly: false

 default-token-nskqk:

 Type: Secret (a volume populated by a Secret)

 SecretName: default-token-nskqk

 Optional: false

QoS Class: BestEffort

Node-Selectors: node-role.kubernetes.io/compute=true

Tolerations: <none>

Additonal Application Pod
Create a new pod definition file called busybox-nfs.yaml:

apiVersion: v1

kind: Pod

32

metadata:

 name: busybox-nfs

spec:

 volumes:

 - name: pure-nfs-2

 persistentVolumeClaim:

 claimName: pure-nfs-claim

 containers:

 - name: busybox-nfs

 image: busybox

 volumeMounts:

 - name: pure-nfs-2

 mountPath: /usr/share/busybox

Execute the following command:

oc create -f busybox-nfs.yaml

This will create a second pod, running in the same namespace as the Nginx pod, however we are using the same

backing store by using the same claim name.

A lot of information can be gathered regarding the newly created pod; some useful information is highlighted below:

oc describe pod busybox-nfs

Name: busybox-nfs

Namespace: nginx

Node: sn1-pool-c07-08.puretec.purestorage.com/10.21.200.118

Start Time: Mon, 18 Mar 2019 12:23:45 -0800

Labels: <none>

Annotations: openshift.io/scc=privileged

Status: Running

IP: 10.129.2.101

Containers:

 busybox-nfs:

 Container ID: docker://87b0a962f7d88c11510ab7ec6fbcb762a535a39ceb1c8453e06874423c3f436c

 Image: busybox

 Image ID: docker-pullable://docker.io/busybox@

sha256:58ac43b2cc92c687a32c8be6278e50a063579655fe3090125dcb2af0ff9e1a64

 Port: <none>

 Command:

 sleep

33

 60000

 State: Running

 Started: Mon, 18 Mar 2019 12:23:54 -0800

 Ready: True

 Restart Count: 0

 Environment: <none>

 Mounts:

 /usr/share/busybox from pure-nfs-2 (rw)

 /var/run/secrets/kubernetes.io/serviceaccount from default-token-nskqk (ro)

Conditions:

 Type Status

 Initialized True

 Ready True

 ContainerReady True

 PodScheduled True

Volumes:

 pure-nfs-2:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

 ClaimName: pure-nfs-claim

 ReadOnly: false

 default-token-nskqk:

 Type: Secret (a volume populated by a Secret)

 SecretName: default-token-nskqk

 Optional: false

QoS Class: BestEffort

Node-Selectors: node-role.kubernetes.io/compute=true

Tolerations: <none>

It can be seen that both the nginx and busybox pods are using the same storage claim that is attached to the same

NFS mount point on the backend.

UPDATING PURE SERVICE ORCHESTRATOR CONFIGURATION

As your OpenShift platform scales with increased demand from applications, workflows, and users, there will inevitably

be a demand for additional backend persistent storage to support these applications and workflows.

You may have a block-only persistent storage environment and have been requested to add a file-based solution as

well, or your current block and file backends may be reaching capacity limits. Additionally, you may want to add or

change existing labels.

34

With Pure Service Orchestrator, adding additional storage backends or changing labels is seamless.

The process is as simple as updating your values YAML file with new labels or adding new FlashArray or FlashBlade

access information and then running this single command:

helm upgrade pure-storage-driver pure/pure-k8s-plugin -f <your_own_dir>/<your_own_values>.yaml

If you used the --set option when initially installing the plugin you must use the same option again, unless these have

been incorporated into your latest YAML file.

ADDING CLUSTER NODES TO OPENSHIFT

This reference architecture used three master nodes, two infrastructure nodes, and three application nodes. This

cluster is large enough to provide sufficient resources to run a few simple applications (see Appendix 2). However, as a

cluster becomes more utilized, it may be necessary to provide additional application or infrastructure nodes to

support additional resource requirements.

The current default scalability limits for OpenShift 3.11 are 250 pods per node. The maximum number of nodes in a

single OpenShift 3.11 cluster is 2,000. However, if you are reaching a cluster of this size, you should be using multiple

backend storage arrays to provide your persistent volumes.

There are processes for adding additional nodes to an OpenShift cluster, and they are well documented within the

main Red Hat OpenShift documentation set, but it is important to cover how to ensure that additional nodes have the

ability to utilize the Pure Storage arrays as providers of stateful storage.

If required, you can configure the Docker local registry for each new node, as described earlier in this document,

before performing the OpenShift node add procedures.

When it comes to ensuring your new node can access stateful storage on Pure Storage devices, it is good to note that,

as we are using a DaemonSet to ensure that our plugin is correctly installed on cluster nodes, the addition of a new

cluster node to your OpenShift cluster will cause the DaemonSet to create a new pure-flex pod on the new node and

install the plugin correctly.

35

CONCLUSION

The Red Hat OpenShift Container Platform provides a Kubernetes-based, production-ready infrastructure foundation to

simplify deployment processes, and provides a stable, highly-available platform on which to run production applications.

With the growth of applications and deployments that require a platform that can also provide an underlying stateful

storage solution, the Pure Service Orchestrator plugin meets these needs.

Additionally, using Pure Storage products to provide stateful storage also enables storage that is enterprise-ready,

redundant, fast, resilient, and scalable.

36

APPENDIX 1: ANSIBLE DEPLOYMENT INVENTORY

The following inventory was used in the deployment of the OpenShift cluster used in this Reference Architecture.

There are a number of key items which are necessary for the correct operation of the configured OpenShift cluster that

have been described in earlier sections of this document.

[OSEv3:children]

masters

etcd

nodes

lb

[OSEv3:vars]

openshift_deployment_type=openshift-enterprise

openshift_release=v3.11

openshift_cluster_network_cidr=10.128.0.0/14

openshift_portal_net=172.30.0.0/16

openshift_master_api_port=8443

openshift_master_console_port=8443

openshift_master_dynamic_provisioning_enabled=True

openshift_master_cluster_method=native

openshift_master_cluster_hostname=sn1-pool-c07-11.puretec.purestorage.com

openshift_master_cluster_public_hostname=sn1-pool-c07-11.puretec.purestorage.com

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true', 'kind':

'HTPasswdPasswordIdentityProvider'}]

openshift_master_htpasswd_users={'admin': '$apr1$3dmqnWzp$Ao46LLSg.otFvtZoTEJ7l0', 'developer': '$apr1$GiIIk.

Ke$5DQqHlrwcsIsWGcMaLtgz1'}

openshift_master_default_subdomain=apps.puretec.purestorage.com

oreg_url=registry.redhat.io/openshift3/ose-${component}:${version}

oreg_auth_user=<INSERT RED HAT USERNAME>

oreg_auth_password=<INSERT RED HAT PASSWORD>

Configure internal registry to use Pure Storage FlashBlade NFS share

openshift_hosted_registry_storage_kind=nfs

37

openshift_hosted_registry_storage_access_modes=['ReadWriteMany']

openshift_hosted_registry_storage_host=10.21.97.48

openshift_hosted_registry_storage_nfs_directory=/openshift

openshift_hosted_registry_storage_volume_name=pure-ra

openshift_hosted_registry_storage_volume_size=100Gi

ansible_ssh_user=root

[masters]

sn1-pool-c07-0[3:5].puretec.purestorage.com

[etcd]

sn1-pool-c07-0[3:5].puretec.purestorage.com

[nodes]

sn1-pool-c07-0[3:5].puretec.purestorage.com openshift_node_group_name='node-config-master'

sn1-pool-c07-0[6:7].puretec.purestorage.com openshift_node_group_name='node-config-infra'

sn1-pool-c07-0[8:9].puretec.purestorage.com openshift_node_group_name='node-config-compute'

sn1-pool-c07-10.puretec.purestorage.com openshift_node_group_name='node-config-compute'

[lb]

sn1-pool-c07-11.puretec.purestorage.com

APPENDIX 2: OPENSHIFT CATALOG TO DEPLOY SIMPLE APPLICATIONS

Whilst the above section details some more complex implementations of applications using persistent storage,

the OpenShift GUI provides a simple catalog of applications with click-through deployment.

Here is an example of using this catalog to deploy a single MongoDB pod with persistent storage provided by a

Pure Storage FlashArray, assuming the StorageClass pure-block has been set as the default. Setting a storageClass to

be a default is performed as follows:

oc patch storageclass pure-block -p '{"metadata": {"annotations": {"storageclass.kubernetes.io/is-default-

class": "true"}}}'

First, we log into the OpenShift Container Platform GUI and navigate to the Catalog, then select the Databases sub-

page and then the Mongo tab, and finally the MongoDB (Persistent) icon, as shown in the following screenshots.

38

FIGURE 12. Main Openshift Application Catalog

FIGURE 13. Database Sub-Catalog

39

FIGURE 14. MongoDB Options

The final selection will create pop-up windows to describe the deployment plan for MongoDB with Persistent Storage.

Go through these steps as follows:

FIGURE 15. MongoDB (Persistent) Information pane

Select Next to bring up the configuration step in the deployment process.

40

FIGURE 16. MongoDB (Persistent) Configuration pane

In Add to Project, select Create New Project and then complete the Project Name field:

FIGURE 17. MongoDB Add to Project pane

Scroll down the configuration window and complete the required fields for Connection Username and Password,

and Admin Password.

FIGURE 18. MongoDB (Persistent) Configuration pane

41

Leave the Volume Capacity at the default setting of 1 Gi for this example and then select Next to move to the

Bindings page:

FIGURE 19. MongoDB (Persistent) Bindings pane

Leave this as the default and complete the application configuration by selecting Create.

We can now follow, through the OpenShift and Pure Storage FlashArray GUIs, the deployment of the MongoDB

application using a deploy pod and an application pod, and the creation of persistent storage.

FIGURE 20. Deploy and Application Pod builds in-progress

FIGURE 21. Persistent Volume created

42

FIGURE 22. Volume created on FlashArray

FIGURE 23. Application Pod detail showing container host

FIGURE 24. FlashArray showing volume/host connection

43

APPENDIX 3: OPENSHIFT DEPLOYMENT LINKS

As this document does not cover details on deploying OpenShift, just specific details for implementing

Pure Storage products in your deployment, here are some useful starting points to help your deployment of

Red Hat OpenShift and some links to the Open Source product OpenShift Origin:

•	 https://docs.openshift.com/container-platform/3.11/install_config/index.html

•	 https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/installing_clusters/

•	 https://docs.openshift.org/latest/install_config/index.html

•	 https://docs.openshift.org/latest/minishift/index.html

https://docs.openshift.com/container-platform/3.11/install_config/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/installing_clusters/
https://docs.openshift.org/latest/install_config/index.html
https://docs.openshift.org/latest/minishift/index.html

44

ABOUT THE AUTHOR

As Director of New Stack Technologies, Simon Dodsley is helping direct

and implement Open Source technologies in cloud, automation, and

orchestration technologies within Pure Storage. Core items include best

practices, reference architectures, and configuration guides.

With over 25 years of storage experience across all aspects of the

discipline, from administration to architectural design, Simon has worked

with all major storage vendors’ technologies and organizations, large

and small, across Europe and the USA, as both customer and service

provider. He also specializes in Data Migration methodologies, assisting

customers in their Pure Storage transition.

Blog: http://www.purestorage.com/blog/author/simon

© 2019 Pure Storage, Inc. All rights reserved.

Pure Storage, Pure1, and the “P” Logo are trademarks or registered trademarks of Pure Storage, Inc. in the U.S. and other countries.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks or registered
trademarks of Red Hat, Inc in many jurisdictions worldwide. Linux ® is the registered trademark of Linus Torvalds in the United States and
other countries. MongoDB ® is a registered trademark of MongoDB, Inc. in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.
js open source or commercial project. The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack
Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are registered marks of their respective owners.

The Pure Storage product described in this documentation is distributed under a license agreement and may be used only in accordance
with the terms of the agreement. The license agreement restricts its use, copying, distribution, decompilation, and reverse engineering.
No part of this documentation may be reproduced in any form by any means without prior written authorization from Pure Storage, Inc. and
its licensors, if any.

THE DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE
LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

ps_ra44p_platform-as-a-service_ltr_03

http://www.purestorage.com/blog/author/simon

