
 

 

TECHNICAL WHITE PAPER 

Containers  
as a Service 
Integrate Kubernetes and Pure Storage Solutions.



TECHNICAL WHITE PAPER  

 

Contents 

Introduction .......................................................................................................................................................... 4 

Containers as a Service (CaaS) .......................................................................................................................... 4 

CaaS Defined .............................................................................................................................................................................. 4 

Components, Prerequisites, and Configuration ............................................................................................... 4 

Pure Storage FlashArray™//X ................................................................................................................................................. 4 

FlashArray//X Technical Specifications .............................................................................................................................. 5 

Pure Storage FlashArray//C ................................................................................................................................ 6 

FlashArray//C Technical Specifications .............................................................................................................................. 6 

Purity for FlashArray (Purity//FA 6) ..................................................................................................................... 6 

Pure Storage FlashBlade® ................................................................................................................................... 7 

Meeting the Needs of Unified Fast File and Object for Modern Applications and Modern Data ...................7 

Purity for FlashBlade (Purity//FB) ....................................................................................................................... 8 

Pure1® .................................................................................................................................................................... 9 

Pure1 Manage ............................................................................................................................................................................. 9 

Pure1 Analyze ............................................................................................................................................................................. 9 

Pure1 Support ............................................................................................................................................................................. 9 

Pure1 Meta ................................................................................................................................................................................... 9 

Evergreen™ Storage ............................................................................................................................................ 9 

Pure Service Orchestrator™ .............................................................................................................................. 10 

Kubernetes .......................................................................................................................................................... 11 

High-level Design ............................................................................................................................................... 11 

Software Version Details .................................................................................................................................. 12 

Compute ............................................................................................................................................................. 12 

Networking ......................................................................................................................................................... 12 

Deployment ........................................................................................................................................................ 13 

Persistent Storage ............................................................................................................................................. 13 

Pure Service Orchestrator Installation ............................................................................................................ 14 



TECHNICAL WHITE PAPER  

 

 3 

PSO Installation (using Helm3) ............................................................................................................................................. 14 

Validate Correct Plugin Installation .................................................................................................................................... 16 

Scaling Backend Storage ...................................................................................................................................................... 17 

Simple Pod Deployment with a Pure Storage FlashArray Persistent Volume ..................................................... 17 

Persistent Volume Claim ................................................................................................................................... 17 

Application Deployment ................................................................................................................................... 19 

Simple Multiple Pod Deployment with a Pure Storage FlashBlade Persistent Volume ................................. 22 

Persistent Volume Claim ............................................................................................................................................ 22 

Nginx Application Pod ................................................................................................................................................. 24 

Additional Application Pod ........................................................................................................................................ 26 

Adding Nodes to a Kubernetes Cluster .......................................................................................................................... 28 

Conclusion ................................................................................................................................................................................. 28 

Appendix: Application Examples .....................................................................................................................28 

MongoDB ................................................................................................................................................................................... 28 

WordPress .................................................................................................................................................................................. 31 

About the Author ............................................................................................................................................... 33 

 



TECHNICAL WHITE PAPER  

 
 

4 

Introduction 

This document provides a practical reference implementation to help integrate Pure Storage® 
products into the deployment of a bare-metal Kubernetes infrastructure. You can easily scale this 
underlying infrastructure to whatever size is required. This document assumes that you 
understand how to deploy a bare-metal Kubernetes solution and provides details only for Pure 
Storage integration pieces. Find links to details on Kubernetes deployments in the Appendix. 

 

Containers as a Service (CaaS) 

CaaS Defined 

Containers as a Service is an implementation of container-based virtualization, where container engines, underlying 

compute servers, and orchestration toolsets are made available to users from a provider. The providers range from the big 

three cloud providers, down to private, on-premises, company-owned solutions. 

CaaS can provide users with an architecture to enable DevOps teams the agility to automate ‘code check-in and go-live’ 

process for containerized solutions, which can significantly reduce the time to deploy and time to go-live into production for 

these applications. CaaS is for deploying applications where there is a requirement for more control over the components 

of applications and a requirement for developers to have a greater understanding of the build and run processes required 

by the application. For example, in a CaaS environment a developer who has written an application in, say, Python, needs 

to understand how to create an empty container image with a base filesystem and then move the code into the container 

locally. You might then have a requirement to compile the code, download dependencies, and finally create a Docker 

image. Only when the image has been created can it be used in the CaaS platform. 

Components, Prerequisites, and Configuration 

Pure Storage FlashArray™//X 

FlashArray is the world’s first 100% all-flash end-to-end NVMe and  

NVMe-oF array, ideal for the most demanding enterprise performance 

requirements. FlashArray provides customers with a modern data 

experience, delivering breakthroughs in speed, simplicity, flexibility, and 

consolidation. It’s ideal for departmental to large-scale enterprise shared-

storage deployments, high performance, and mission-critical applications. In a world of fast, pervasive networking, 

ubiquitous flash memory, and an evolving scale-out application architecture, Pure Storage’s FlashArray provides customers 

with both networked and direct-attached storage in a single, shared architecture. With latency as low as 150 μs, FlashArray 

brings new levels of performance to mission-critical business applications and databases. 



TECHNICAL WHITE PAPER  

 

  
 

5 

From entry level to enterprise workloads, FlashArray//X lets your organization accelerate your most critical applications. 

FlashArray//X delivers major breakthroughs in performance, simplicity, and consolidation. It’s ideal both for enterprise 

applications such as Oracle, SQL Server, and SAP, as well as cloud-native, web-scale applications such as MongoDB, 

Cassandra, Hadoop, and MariaDB. The FlashArray//X70 and //X90 support optional DirectMemory Cache, which uses Intel 

Optane storage class memory (SCM) to run database workloads at near-DRAM speeds. If extreme performance is a top 

priority, your organization can rely on FlashArray//X to deliver the low latency and high throughput end users demand.  

 

FlashArray//X Technical Specifications 

 Capacity* Physical 

//X10 Up to 73TB/66.2TiB effective capacity 

Up to 22TB/19.2TIB raw capacity 

3U, 640-845 Watts (nominal–peak) 

95 lbs (43.1kg) fully loaded, 5.12”x18.94”x29.72” chassis 

//X20 Up to 314TB/285.4TiB effective capacity 

Up to 94TB/88TIB raw capacity 

3U, 741-973 Watts (nominal–peak) 

95 lbs (43.1kg) fully loaded, 5.12”x18.94”x29.72” chassis 

//X50 
Up to 663TB/602.9TiB effective capacity 

Up to 20TB/18.6TIB raw capacity 

3U, 868-1114 Watts (nominal–peak) 

95 lbs (43.1kg) fully loaded, 5.12”x18.94”x29.72” chassis 

//X70 Up to 2286TB/2078.9TiB effective capacity 

Up to 622TB/544.2TiB raw capacity 

3U, 1084-1344 Watts (nominal–peak) 

97 lbs (44kg) fully loaded, 5.12”x18.94”x29.72” chassis 

//X90 Up to 3.3PB/3003.1TiB effective capacity 

Up to 878TB/768.3TiB raw capacity 

3U-6U, 1160-1446 Watts (nominal–peak) 

97 lbs (44kg) fully loaded, 5.12”x18.94”x29.72” chassis 

Direct Flash Shelf Up to 1.9PB effective capacity 

Up to 512TB/448.2TiB raw capacity 

3U, 460–500 Watts (nominal–peak) 

87.7 lbs (39.8 kg) fully loaded, 5.12”x18.94”x29.72” chassis 

* Effective capacity assumes HA, RAID, and metadata overhead, GB-to-GiB conversion, and includes the benefit of data reduction with always-on inline deduplication, compression, and pattern 
removal. Average data reduction is calculated at 5-to-1 and does not include thin provisioning. 

  



TECHNICAL WHITE PAPER  

 

  
 

6 

Pure Storage FlashArray//C 

Pure Storage FlashArray//C lets you consolidate workloads and simplify storage with consistent all-flash performance at a 

lower TCO than hybrid storage. FlashArray//C provides a 100% NVMe all-flash foundation for capacity-oriented applications, 

test and development workloads, multi-site disaster recovery, and data protection at hybrid storage economics. Scale up to 

5.2PB effective storage in just three- to nine-rack units. Maximize results and flexibility for high-capacity applications on-

premises and easily connect to the cloud. With Pure Evergreen™, you can upgrade performance, capacity, and features 

over time without disruption. 

FlashArray//C Technical Specifications 

 Capacity Physical 

//C60-366 Up to 1.3PB effective capacity 
366TB raw capacity 

3U, 1000-1240 Watts (nominal–peak) 
97.7 lbs (44.3kg) fully loaded, 5.12”x18.94”x29.72” chassis 

//C60-494 Up to 1.9PB effective capacity 
494TB raw capacity 

3U, 1000-1240 Watts (nominal–peak) 
97.7 lbs (44.3kg) fully loaded, 5.12”x18.94”x29.72” chassis 

//C60-840 
Up to 3.2PB effective capacity 
840TB raw capacity 

6U, 1480-1760 Watts (nominal–peak) 

177 lbs (80.3kg) fully loaded, 10.2”x18.94”x29.72” chassis 

//C60-1186 
Up to 4.6PB effective capacity 
1.2PB raw capacity 

6U, 1480-1760 Watts (nominal–peak) 

185.4 lbs (84.1kg) fully loaded, 10.2”x18.94”x29.72” chassis 

//C60-1390 
Up to 5.2PB effective capacity 
1.4PB raw capacity 

9U, 1960-2280 Watts (nominal–peak) 

273.2 lbs (123.9kg) fully loaded, 15.35”x18.94”x29.72” chassis 

 

Purity for FlashArray (Purity//FA 6) 
 
The Pure Storage® Purity operating environment is the software-defined engine of Pure Storage FlashArray. Purity is the 

driver that enables Pure FlashArray products, powering FlashArray//X to deliver comprehensive data services for your 

performance-sensitive data-center applications, and FlashArray//C for your capacity-oriented applications. Purity’s core 

technologies provide the speed, agility, and intelligence needed to simplify everything in your production environment. Its 

features set the pace for next-generation shared accelerated storage, from enterprise data services for all workloads to 

proven FlashArray 99.9999% availability and on average 10:1 total efficiency. And with the Pure Evergreen™ ownership 

model, your Pure as-a-Service includes new array features and improvements to Purity via non-disruptive upgrades. Purity 

implements communication protocols and delivers rich data services across all Pure FlashArray systems. Features including 

ActiveCluster™ for business continuity and ActiveDR for disaster recovery, QoS, vVols, NVMe-oF, Snap to NFS, Purity 

CloudSnap™, DirectMemory™ Cache, and EncryptReduce are all examples of valuable new features provided with non-

disruptive Purity upgrades. All Purity storage services, APIs, and advanced data services are built-in and included with 

every array. These technologies are driving the next-generation performance and industry-leading resiliency of  

Pure solutions. 

https://www.purestorage.com/solutions/infrastructure/business-continuity.html
https://www.purestorage.com/content/solutions/infrastructure/data-protection.html
https://www.purestorage.com/content/products/evergreen.html


TECHNICAL WHITE PAPER  

 

  
 

7 

Pure Storage FlashBlade® 

Pure Storage FlashBlade is a Unified Fast File and Object (UFFO) storage platform that enables organizations to 

consolidate modern data intensive applications and cloud native operations onto a single scalable storage platform. 

FlashBlade allows organizations of all sizes to eliminate complex and inefficient infrastructure silos while delivering new 

levels of investment protection that support both private and hybrid cloud use cases. FlashBlade’s unparalleled simplicity 

and multidimensional all-flash performance empower modern data and modern applications needs. Customers today are 

leveraging FlashBlade for real-time analytics, rapid recovery of backup data along with ransomware mitigation, and 

accelerated DevOps pipelines that are supporting the digital transformation priorities of business ranging from small 

municipalities to Fortune 100 enterprises across a diverse set of industries around the globe.  

Meeting the Needs of Unified Fast File and Object for Modern Applications and Modern Data 

FlashBlade delivers unprecedented performance, simplicity and consolidation with Its massively distributed architecture 

that enables consistent performance for modern applications using NFS, S3/Object, SMB, and HTTP protocols. With 

FlashBlade UFFO, customers can scale out performance and capacity without scaling up complexity. 

 
 
 

Simplicity Performance Consolidation 

• Evergreen architecture and 

non-disruptive upgrades 

• Requires one-tenth the set-up 

time and effort of competitors’ 

environments 

• Low complexity and easy to 

manage  

• Simplify lifecycle and data 

services management 

• Reduces networking complexity 

and costly network 

switches/port 

• Deliver linear, predictable 

storage performance while 

scaling up to tens of billions of 

files and objects 

• Ability to run Fast File and Fast 

Object on-premises or in a 

hybrid or multi-cloud 

architecture 

• Investment protection to grow 

and scale-out as necessary 

without stranding capacity or 

performance 

• Provide multi-dimensional 

performance that spans across 

data sets and sizes 

• Enables multiple applications 

to leverage the same platform 

for data needs  instead of 

duplicating across silos or 

using point solutions 

• Eliminates stranded storage 

capacity and performance. 

• Disaggregates compute and 

storage to remove the 

complexity associated with 

DAS (Direct Attached Storage) 

• Provide cloud-optimized 

efficiency for data and data 

services 



TECHNICAL WHITE PAPER  

 

  
 

8 

 
 

 

 

 

Purity for FlashBlade (Purity//FB)  

FlashBlade is built on the scale-out metadata architecture of Purity for FlashBlade, capable of handling 10s of billions of files 

and objects while delivering maximum performance, effortless scale, and global flash management. The distributed 

transaction database built into the core of Purity means storage services at every layer are elastic: simply adding blades 

grows system capacity and performance, linearly and instantly. Purity//FB supports S3-compliant object store, offering 

ultrafast performance at scale. In addition, FlashBlade offers File and Object replication services for site to site, as well as 

on-premises to public cloud via Object replication in AWS S3 in its native format. It also supports File protocols including 

NFSv3 and SMB, and offers a wave of new enterprise features, like snapshots, LDAP, network lock management (NLM), and 

IPv6, to extend FlashBlade into new use cases. 

  

Blade Purity//FB Fabric 

Scale-Out DirectFlash + Compute 

Ultra-low latency, 8, 17, and 52TB 

capacity options that can be hot-

plugged into the system for expansion 

and performance with the capability to 

scale from 7 to 150 blades non-

disruptively. 

Scale-Out Storage Software 

The heart of FlashBlade, 

implementing its scale-out storage 

capabilities, services, and 

management. 

Software-Defined Networking 

Includes a built in 40Gb Ethernet 

fabric, providing a total network 

bandwidth of 320Gb/s for the chassis. 

Power, Density, Efficiency 

FlashBlade delivers industry-leading throughput, IOPS, latency, and 

capacity – with up to 20x less space and 10x less power and cooling. 

 

 

 



TECHNICAL WHITE PAPER  

 

  
 

9 

Pure1® 

Pure1, our cloud-based management, analytics, and support platform, expands the self-managing, plug-n-play design of 

Pure all-flash arrays with the machine learning predictive analytics and continuous scanning of Pure1 Meta™ to enable an 

effortless, worry-free data platform. 

Pure1 Manage 

In the Cloud IT operating model, installing and deploying management software is an oxymoron: you simply log in. Pure1 

Manage is SaaS-based, allowing you to manage your array from any browser or the Pure1 Mobile App – with nothing extra 

to purchase, deploy, or maintain. From a single dashboard, you can manage all your arrays, with full visibility on the health 

and performance of your storage. 

Pure1 Analyze 

Pure1 Analyze delivers accurate performance forecasting – giving you complete visibility into the performance and capacity 

needs of your arrays – now and in the future. Performance forecasting enables intelligent consolidation and 

unprecedented workload optimization. 

Pure1 Support 

Pure combines an ultra-proactive support team with the predictive intelligence of Pure1 Meta to deliver unrivalled support 

that’s a key component in our proven FlashArray 99.9999% availability. Customers are often surprised and delighted when 

we fix issues they did not even know existed. 

Pure1 Meta 

The foundation of Pure1 services, Pure1 Meta, is global intelligence built from a massive collection of storage array health 

and performance data. By continuously scanning call-home telemetry from Pure’s installed base, Pure1 Meta uses machine 

learning predictive analytics to help resolve potential issues and optimize workloads. The result is both a white glove 

customer support experience and breakthrough capabilities like accurate performance forecasting. Meta is always 

expanding and refining what it knows about array performance and health, moving the Data Platform toward a future of 

self-driving storage. 

Evergreen™ Storage 

Customers can deploy storage once and enjoy a subscription to continuous innovation via Pure’s Evergreen Storage 

ownership model: expand and improve performance, capacity, density, and/or features for 10 years or more – all without 

downtime, performance impact, or data migrations. Pure has disrupted the industry’s 3-5-year rip-and-replace cycle by 

engineering compatibility for future technologies right into its products. 

  



TECHNICAL WHITE PAPER  

 

  
 

10 

Pure Service Orchestrator™ 

Since 2017 Pure Storage has been building seamless integrations with container platforms and orchestration engines using 

the plugin model, allowing persistent storage to be leveraged by environments such as Kubernetes. 

As adoption of container environments move forward, the device plugin model is no longer sufficient to deliver the cloud 

experience developers are expecting. This is amplified by the fluid nature of modern containerized environments, where 

stateless containers are spun up and spun down within seconds, and stateful containers have much longer lifespans. Some 

applications in these environments require block storage, while others require file storage, and a container environment 

can rapidly scale to 1000s of containers. These requirements can quickly push past the boundaries of any single storage 

system. We designed Pure Service Orchestrator™ to provide your developers with a similar experience to what they expect 

from the public cloud. Pure Service Orchestrator can offer a seamless container-as-a-service environment that is: 

Simple, Automated and Integrated: Provisions storage on-demand automatically via policy, and integrates seamlessly, 

enabling DevOps and Developer friendly ways to consume storage. 

Elastic: Allows you to start small and scale your storage environment with ease and flexibility, mixing and matching varied 

configurations as your Kubernetes environment grows. 

Multi-protocol: Support for both file and block. 

Enterprise-grade: Deliver the same Tier1 resilience, reliability and protection that your mission-critical applications depend 

upon, for stateful applications in your Kubernetes clusters. 

Shared: Makes shared storage a viable and preferred architectural choice for the next generation, containerized data 

centers by delivering a vastly superior experience relative to direct-attached storage alternatives. 

Stateful: Complete with a fully managed cloud-native database to enable enhanced feature support and disaster recovery 

protection. 

Pure Service Orchestrator integrates seamlessly with your Kubernetes orchestration environment and functions as a 

control-plane virtualization layer that enables containers as a service rather than storage as a service. 

  



TECHNICAL WHITE PAPER  

 

  
 

11 

Kubernetes 

Kubernetes is an Open Source system for managing containerized applications across multiple hosts, providing basic 

mechanisms for deployment, maintenance, and scaling of applications. The Open Source project is hosted by the Cloud 

Native Computing Foundation. 

Kubernetes coordinates a highly available cluster of computers that are connected to work as a single unit. The 

abstractions in Kubernetes allow you to deploy containerized applications to a cluster without tying them explicitly to 

individual machines. To make use of this new model of deployment, applications need to be packaged in a way that 

decouples them from individual hosts: they need to be containerized. Containerized applications are more flexible and 

available than in past deployment models, where applications were installed directly onto specific machines as packages 

deeply integrated into the host. Kubernetes automates the distribution and scheduling of application containers across a 

cluster in a more efficient way. Kubernetes is an open-source platform and is production-ready. 

High-level Design 

The reference implementation used and described in this document consists of a six-node cluster, consisting of two kube-

master hosts, with all six nodes being considered node hosts. The clustered etcd key-value store is run over three nodes. It 

is responsible for managing the entire cluster, where the node hosts run the applications within pods and communications 

between the kube-master nodes and the etcd system using APIs. This is shown in the figure below: 

Figure 1. High-Level Architectural Design 

  

https://github.com/kubernetes/kubernetes


TECHNICAL WHITE PAPER  

 

  
 

12 

Software Version Details 

This table provides the installed software versions for the different components used in building this Reference 

Implementation. 

Compute 

The role of this Reference Implementation is not to prescribe specific compute platforms for a Kubernetes cluster. 

Therefore, we refer to the servers being used in white-box terms. The servers used here have the following specifications: 

• Intel® Xeon® E5-2630 v3 @ 2.40GHz 

• 32 vCPU 

• 128 GiB memory 

Networking 

From a networking perspective, the servers in use have the following connected network interfaces: 

• 1 x 10GbE (management) 

• 1 x 10GbE (iSCSI data plane) 

There is no specific network hardware defined within this document, as this decision is dependent on the actual 

implementation performed by the reader. Within the Kubernetes networking layer, this implementation uses the Calico 

network plugin, the default provided by kubespray, although there are other network plugins available. 

The networking communication between the Pure Service Orchestrator and backing storage devices requires that all 

cluster nodes have management plane access to all FlashArray and FlashBlade devices. FlashBlade data plane 

communication is performed using the NFS protocol whereas data plane communication between cluster nodes and 

FlashArrays is performed using an iSCSI network that can be either layer 2 or layer 3 depending on your network 

architecture. In this implementation, the iSCSI data plane is isolated from the management plane network, and jumbo 

frames are used end-to-end for the data plane. Fibre Channel is also a supported data plane protocol for FlashArrays, but 

this would require HBA cards to be installed in all cluster nodes and for zones to have been created between FlashArray 

FC ports and all cluster nodes prior to installing the Pure Service Orchestrator. 

Software Version 

Ubuntu 20.04 kernel 5.4.0-42-generic 

Kubernetes 1.18.6 

Docker 1.19.12 

Helm 3.2.3 

Pure Service Orchestrator 6.0.1 



TECHNICAL WHITE PAPER  

 

  
 

13 

Deployment 

While it is not in the scope of this document to go into detail on how to build a Kubernetes cluster, this deployment was 

implemented using the Kubernetes Incubator project, kubespray. If you decide to use kubespray as your deployment 

toolset, you are then recommended to perform the following tasks to ensure a smooth deployment on all cluster nodes: 

• Ensure swap is disabled on all cluster nodes and the swap entry is removed from /etc/fstab 

• Disable the firewalld software as this will interrupt the Kubernetes API communications within the cluster 

To ensure that all FlashArray connections are optimal, it is necessary to install the latest multipath-tools, open-iscsi and 

nfs-common package, and then enable both the multipathd and iscsid daemons, to ensure they persist after any reboots. 

More details can be found in the Pure Knowledge Base article on Linux Recommendations. 

Note: It is also advisable to implement the udev rules defined in the Knowledge Base article mentioned above to ensure 

optimal performance of your connected Pure Storage volumes. 

At this point, the deployment of the Kubernetes cluster can proceed using kubespray1. By default, kubespray installs the 

Kubernetes Dashboard so you will want to grant the Dashboard Service Account Admin privileges2 or create a user to 

access the dashboard3. 

After completing the deployment of your cluster, it is necessary to install Helm4 as the Pure Storage plugin detailed below 

uses Helm Charts for deployment. 

Persistent Storage 

Within Kubernetes, we can use multiple Pure Storage backends to provide persistent storage in the form of Persistent 

Volumes for Persistent Volume Claims issued by developers. 

The Pure Storage Kubernetes plugin provides both file- and block-based Storage Classes, provisioned from either 

FlashArray or FlashBlade storage devices. To make these Storage Classes available to your Kubernetes cluster, you must 

install the Pure Service Orchestrator in the form of the Pure Storage Kubernetes plugin. 

  

 
 

1 https://github.com/kubernetes-sigs/kubespray 
2 https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/README.md#admin-privilages 
3 https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/creating-sample-user.md 
4 https://helm.sh/docs/intro/install 

https://support.purestorage.com/Solutions/Linux/Linux_Reference/Linux_Recommended_Settings
https://github.com/kubernetes-sigs/kubespray
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/README.md#admin-privilages
https://github.com/kubernetes/dashboard/blob/master/docs/user/access-control/creating-sample-user.md
https://helm.sh/docs/intro/install


TECHNICAL WHITE PAPER  

 

  
 

14 

Pure Service Orchestrator Installation 

Installation and configuration of the Pure Service Orchestrator is simple and requires only a few steps, which are described 

in our GitHub repository for the Pure Storage Kubernetes plugin. However, there are a couple of actions that need to be 

performed on every k8s worker node in your cluster before performing the installation: 

• Ensure the latest multipath software package is installed and enabled. 

• Ensure the /etc/multipath.conf file exists and contains the Pure Storage stanza as described in the Linux Best Practices 

referenced above. 

PSO Installation (using Helm3) 

The Pure Service Orchestrator manages the installation of all required software across your Kubernetes cluster by using a 

DaemonSet to perform this cross-node installation. The DaemonSet runs a pod on each node in the cluster, which ensures 

that PSO correctly runs on all worker nodes in your cluster. It will keep the config updated and ensure that files are installed 

safely. 

As previously mentioned, the installation of the Pure Service Orchestrator for Kubernetes requires that you have Helm3 

installed on your Kubernetes cluster. After you have installed the Helm3 binaries and completed the installation, you should 

perform the following steps: 

1. Add the pure repo to Helm: 

# helm repo add pure http://purestorage.github.io/pso-csi 

# helm repo update 

# helm search repo pure-pso 

2. Update the PSO configuration file: Enable Pure Service Orchestrator for Kubernetes to communicate with your Pure 

Storage backend arrays, by updating the PSO configuration file to reflect the access information for the backend 

storage solutions. The file is called values.yaml and needs to contain the management IP address of the backend 

devices, together with a valid, privileged, API token for each device. Additionally, an NFS Data VIP address is required 

for each FlashBlade. 

3. Take a copy of the values.yaml provided by the Helm Chart5 and update the parameters for the arrays in the 

configuration file with your site-specific information, as shown in the following example: 

  

 
 

5 Or download from https://raw.githubusercontent.com/purestorage/pso-csi/master/pure-pso/values.yaml 

http://purestorage.github.io/pso-csi


TECHNICAL WHITE PAPER  

 

  
 

15 

arrays: 

  FlashArrays: 

    - MgmtEndPoint: "1.2.3.4" 

      APIToken: "a526a4c6-18b0-a8c9-1afa-3499293574bb" 

    - MgmtEndPoint: "1.2.3.5" 

      APIToken: "b526a4c6-18b0-a8c9-1afa-3499293574bb" 

  FlashBlades: 

    - MgmtEndPoint: "1.2.3.6" 

      APIToken: "T-c4925090-c9bf-4033-8537-d24ee5669135" 

      NFSEndPoint: "1.2.3.7" 

 

Ensure that the values you enter are correct for your own Pure Storage devices. 

Configure the parameter clusterID to be a unique value to identify your Kubernetes cluster. This ensures that multiple 

Kubernetes clusters running with PSO can coexist on the same backends without fear of volume and share name 

clashes. If you wish to use Fibre Channel as your data protocol for FlashArrays, then you must also change the 

following parameter in the configuration file: 

 

flasharray.sanType: FC 

 

Please note that Fibre Channel support is only for bare-metal installation. 

4. Create a Namespace for PSO: Pure requires that PSO is installed into its own namespace, therefore create a 

namespace with the following command: 

 

kubectl create namespace <name> 

5. Install the plugin: It is advisable to perform a ‘dry run’ installation to ensure that your YAML file is correctly formatted: 

# helm install pure-pso pure/pure-pso -f  

<your_own_dir>/<your_own_values>.yaml –namespace <name> --dry-run –-debug 

 

Perform the actual install. 

# helm install pure-pso pure/pure-pso –namespace <name> -f  

<your_own_dir>/<your_own_values>.yaml 

 

The values set in your own YAML will overwrite any default values, but the --set option can also take precedence over 

any value in the YAML, for example: 

# helm install pure-pso pure/pure-pso –namespace <name> -f 

<your_own_dir>/<your own values>.yaml –-set flasharray.sanType=FC 

 

The recommendation is to use the values.yaml file rather than the --set option for ease of use, especially should 

modifications be required to your configuration in the future. 

 



TECHNICAL WHITE PAPER  

 

  
 

16 

Validate Correct Plugin Installation 

To ensure that the Pure Service Orchestrator is correctly installed and running, we need to check for a few simple things in 

the Kubernetes cluster. Note there will also be CockroachDB related items in the namespace. 

StorageClass: Two ‘pure’ classes should exist. 

# kubectl get sc 

 

NAME  PROVISIONER  AGE 

pure-block pure-provisioner 2d 

pure-file pure-provisioner 2d 

DaemonSet: 

# kubectl get ds -n <name> 

 

NAME        DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE 

pso-csi-node  6     6         6     6           6          <none>        2d 

Deployment: 

# kubectl get statefulset -n <name> 

 

NAME   READY AGE 

pso-csi-controller 1/1 2d 

Service: 

# kubectl get service -n <name> 

 

NAME   TYPE  CLUSTER-IP   EXTERNAL-IP PORT(S) AGE 

pso-csi-controller ClusterIP 10.233.34.208  <none>  12345/TCP 2d 

Pods: One pso-csi-node pod should be running on each cluster node, one pso-csi-controller pod plus between 5 and 7 

pso-db pods 

# kubectl get pod --namespace <name> 

 

NAME    READY STATUS  RESTARTS AGE 

pso-csi-controller-0 6/6 Running 0  2d 

pso-csi-node-dhpxf  3/3 Running 0  2d 

pso-csi-node-jb8vn  3/3 Running 0  2d 

pso-csi-node-k6q2l  3/3 Running 0  2d 

pso-csi-node-p9pwh  3/3 Running 0  2d 

pso-csi-node-rndzj  3/3 Running 0  2d 

pso-csi-node-w7fpg  3/3 Running 0  2d 



TECHNICAL WHITE PAPER  

 

  
 

17 

Scaling Backend Storage 

As your CaaS platform scales with increased demand from applications, workflows and users, you’ll inevitably face a 

demand for additional backend persistent storage to support these applications and workflows. 

You may have a block-only persistent storage environment and have been requested to add a file-based solution as well, 

or your current block and file backends may be reaching capacity limits. Additionally, you may want to add or change 

existing labels. 

With the Pure Service Orchestrator, adding additional storage backends or changing labels is seamless and 

straightforward. The process is as simple as updating your configuration YAML file with new labels or adding new 

FlashArray or FlashBlade access information and then running this single command: 

# helm upgrade pure-pso pure/pure-pso -f <your_own_dir>/<your_own_values>.yaml 

If you used the --set option when initially Installing the plugin, you must use the same option again, unless these have been 

incorporated into your latest YAML file. 

Simple Pod Deployment with a Pure Storage FlashArray Persistent Volume 

To validate that the Pure Storage Kubernetes plugin has been configured and installed correctly, we can create a simple 

pod with the running Microsoft® SQL Server® for Linux using a persistent volume from the configured Pure Storage 

backend. Provided here are two files that we can use to validate the installation and show a working application 

deployment. These are YAML files, firstly defining a Pure Storage-based persistent volume claim, and secondly defining the 

Nginx application using the persistent volume. 

Before we can do any of this work, the SQL Server is going to require a password, and this is obtained from a kubernetes 

secret. To create the secret, we must issue this command: 

# kubectl create secret generic mssql --from-literal=SA_PASSWORD=<your password> 

Persistent Volume Claim 

Create a file called sql-pvc.yaml: 

apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: mssql-data 

spec: 

  accessModes: 

  - ReadWriteOnce resources: 

  requests: storage: 8Gi 

  storageClassName:  pure-block 



TECHNICAL WHITE PAPER  

 

  
 

18 

Figure 2. FlashArray GUI Storage > Volumes Pane 

Figure 3. FlashArray GUI Storage > Selected Volume Pane 

Execute the following command: 

# kubectl create -f sql-pvc.yaml 

This will create a PVC called mssql-data and the Pure Storage Dynamic Provisioner will automatically create a Persistent 

Volume to back this claim and be available to a pod that requests it. 

The PV created for the PVC can be seen using the following command: 

# kubectl get pvc 

 

NAME     STATUS VOLUME     CAPACITY ACCESS MODES STORAGECLASS AGE 

mssql-data  Bound  pvc-41c347e9-968f-11e8-9c45-0025b5c0808f 8Gi   RWO        pure-block   18s 

From this, we can cross-reference to the actual volume created on FlashArray. 

 

 

 

 

 

 

 

We can see that the volume name matches the PV name with a prefix of k8s-. This prefix is technically the ClusterID 

parameter defined in the values.yaml configuration file mentioned previously. Looking more closely at the volume on 

FlashArray, we see that it is also not yet connected to any host, as no pod is using the volume. 

 

 

 

 

 

 



TECHNICAL WHITE PAPER  

 

  
 

19 

Application Deployment 

Create a file called sqldeployment.yaml: 

apiVersion: apps/v1beta1 

kind: Deployment 

metadata: 

  name: mssql-deployment 

spec: 

  replicas: 1 

  template: 

    metadata: 

      labels: 

        app: mssql 

    spec: 

      terminationGracePeriodSeconds: 10 

      containers: 

      - name: mssql 

        image: microsoft/mssql-server-linux  

        ports 

        - containerPort: 1433  

        securityContext: 

          privileged: true  

        env: 

        - name: ACCEPT_EULA 

          value: "Y"  

        - name: SA_PASSWORD 

          valueFrom: 

            secretKeyRef: 

              name: mssql 

              key: SA_PASSWORD 

        volumeMounts: 

        - name: mssqldb 

          mountPath: /var/opt/mssql 

      volumes: 

      - name: mssqldb  

        persistentVolumeClaim: 

          claimName: mssql-data 

Execute the following command: 

# kubectl create -f sqldeployment.yaml 



TECHNICAL WHITE PAPER  

 

  
 

20 

This will create a pod for the mssql-deployment running SQL Server for Linux and the Pure Service Orchestrator will mount 

the PV created earlier to the directory /var/opt/mssql within the pod. To find the exact name of the pod created use the 

‘kubectl get pods’ command. A lot of information can be gathered regarding the newly created pod – some useful 

information is highlighted below: 

# kubectl describe pod mssql-deployment-5f9b58fd9b-2nzfm 

Name:mssql-deployment-5f9b58fd9b-2nzfm 
 
Namespace:default 
 
Node:sn1-c08-caas-02/10.21.200.62 
 
Start Time: Thu, 03 Sep 2020 14:25:42 -0700 
Labels: app=mssql 

Annotations: 
pod-template-hash=1956149856 
<none> 

Status: Running 
IP: 10.233.80.205 
Controlled By: ReplicaSet/mssql-deployment-5f9b58fd9b 
Containers:  
mssql: 

docker://f38ea59cb674f83aa1db18508029021d131806da8fe0d423767d8ef3260e514c Container ID: 
Image: microsoft/mssql-server-linux 
Image ID: docker-pullable://microsoft/mssql-server- 
linux@sha256:8231b746946d12a6a1d5e6c7bcb3d983e97ed1fe5ba3ad04e52305060aced166 
Port: 1433/TCP 
Host Port: 0/TCP 
State: Running 
Started: Thu, 03 Sep 2020 14:25:46 -0700 
Ready: True 

Restart Count: 0 
Environment: 
 
ACCEPT_EULA: Y 
 
SA_PASSWORD: <set to the key 'SA_PASSWORD' in secret 'mssql'> Optional: false 
 
Mounts: 
 
/var/opt/mssql from mssqldb (rw) 
 
/var/run/secrets/kubernetes.io/serviceaccount from default-token-7v5xw (ro) 
 
Conditions: 

Status Type 
Initialized True 
Ready True 
PodScheduled True 
Volumes:  
mssqldb: 

PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same Type: 
namespace) 

mssql-data ClaimName: 
ReadOnly: False 
default-token-7v5xw: 
Type: Secret (a volume populated by a Secret) 
SecretName: default-token-7v5xw 
Optional: False 



TECHNICAL WHITE PAPER  

 

  
 

21 

QoS Class: BestEffort 
Node-Selectors: <none> 
Tolerations: <none> 
–  
–  

–  

We can see which node the pod has been created on, and this can be confirmed from the FlashArray GUI. 

 

We can confirm the SQL Server application is working by running sqlcmd to connect to the pod at its internal IP address, 

which we can find in the pod description above, and then a couple of simple SQL commands to prove the database  

is there. 

# /opt/mssql-tools/bin/sqlcmd -S 10.233.80.205 -U sa -P <password>  

1> select @@servername 

2> go 

  

Figure 4. FlashArray GUI Storage > Selected Volume Pane 



TECHNICAL WHITE PAPER  

 

  
 

22 

------------------------------------------------------------------------------------------------

mssql-deployment 

(1 rows affected)    

1> select name, database_id, create_date from sys.databases ;   

2> go    

Name              database_id create_date 

------------------------------------------------ ----------- ----------------------- 

Master 1      2003-04-08 09:13:36.390 

Tempdb 2      2020-09-03 21:25:51.700 

Model 3      2003-04-08 09:13:36.390 

Msdb 4      2020-06-30 00:03:38.280 

(4 rows affected) 

1>  

Simple Multiple Pod Deployment with a Pure Storage FlashBlade Persistent Volume 

Here we are going to validate that the Pure Service Orchestrator plugin has been configured and installed correctly to 

creates NFS based persistent volumes on a Pure Storage FlashBlade backend, that can be shared by multiple pods. 

Provided here are files that we can use to validate the installation and show an end-to-end example. These are YAML files 

firstly defining a Pure Storage based persistent volume claim, secondly defining the Nginx application using the persistent 

volume and finally defining an additional pod to connect to the same PVC. 

Persistent Volume Claim 

Create a file called nginx-nfs-pvc.yaml: 

apiVersion: v1 

kind: PersistentVolumeClaim 

metadata: 

  name: pure-nfs-claim 

spec: 

  accessModes: 

  - ReadWriteMany  

  resources: 

    requests: storage: 10Gi 

      storageClassName:  pure-file 

Execute the following command: 

# kubectl create -f nginx-nfs-pvc.yaml 



TECHNICAL WHITE PAPER  

 

  
 

23 

This will create a PVC called pure-nfs-claim and the Pure Service Orchestrator will automatically create a Persistent Volume 

to back this claim and be available to a pod that requests it. 

The PV created for the PVC can be seen using the following command: 

# kubectl get pvc 

NAME  STATUS VOLUME               CAPACITY   ACCESSMODES STORAGECLASS   AGE 

pure-nfs-claim Bound pvc-a59d3f5a-997a-11e8-9c45-0025b5c0808f 10Gi RWX     pure-file     12s 

and from this, we can cross-reference to the actual volume created on the Pure Storage FlashBlade. 

 

Again, we can see that the filesystem name matches the PV name with a prefix of k8s-. 

  

Figure 5. FlashBlade GUI Storage > Storage File Systems Pane 



TECHNICAL WHITE PAPER  

 

  
 

24 

Nginx Application Pod 

Create a file called nginx-pod-nfs.yaml: 

apiVersion: v1 

kind: Pod 

metadata: 

  name: nginx-nfs 

  namespace: default 

spec: 

  volumes: 

  - name: pure-nfs  

    persistentVolumeClaim: 

      claimName: pure-nfs-claim 

  containers: 

  - name: nginx-nfs 

    image: nginx  

    command: 

      - sleep 

      - “3600” 

    volumeMounts: 

      - name: pure-nfs 

        mountPath: /data 

    ports: 

      - name: pure 

        containerPort: 80 

Execute the following command: 

# kubectl create -f nginx-pod-nfs.yaml 

This will create a pod called nginx-pod-nfs that will run the Nginx image and the CSI driver will mount the PV created earlier 

to the directory /data within the pod. A lot of information can be gathered regarding the newly created pod as shown 

below, but some useful information is highlighted below: 

  



TECHNICAL WHITE PAPER  

 

  
 

25 

# kubectl describe pod nginx-nfs 
 
Name:nginx-nfs 
 
Namespace:default 
 
Node:sn1-c08-caas-01/10.21.200.61 
 
Start Time:   Mon, 07 Sep 2020 06:22:00 -0700 
 
Labels:<none> 
 
Annotations:  <none> 
 
Status:Running 
 
IP: 10.233.90.13 

Containers: 

nginx-nfs:  
Container ID: docker://420ae7b6172425432dfa8faacd0b583a4f43235ba622936b9a235e61abe29837  
Image: nginx  
Image ID: docker-  

pullable://nginx@sha256:d85914d547a6c92faa39ce7058bd7529baacab7e0cd4255442b04577c4d1f424  
Port: 80/TCP  
Host Port: 0/TCP  
State: Running  
Started: Mon, 07 Sep 2020 06:22:08 -0700  

Ready: True  
Restart Count: 0  
Environment: <none>  
Mounts:  
/data from pure-nfs (rw)  
/var/run/secrets/kubernetes.io/serviceaccount from default-token-7v5xw (ro)  

Conditions:  
Type Status  
Initialized True  
Ready True  
PodScheduled True  

Volumes:  
pure-nfs:  
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same  

namespace)  
ClaimName: pure-nfs-claim  
ReadOnly: false  

default-token-7v5xw:  
Type: Secret (a volume populated by a Secret)  
SecretName: default-token-7v5xw  
Optional: false  

QoS Class: BestEffort  
Node-Selectors: <none> 
 
  



TECHNICAL WHITE PAPER  

 

  
 

26 

Additional Application Pod 

Create a new pod definition file called busybox-nfs.yaml: 

apiVersion: v1  
kind: Pod  
metadata:  
name: busybox-nfs  
namespace: default  

spec:  
volumes:  
- name: pure-nfs-2  
persistentVolumeClaim:  
claimName: pure-nfs-claim  

containers:  
- name: busybox-nfs 

 
image: 

busybox 

volumeMounts: 

- name: pure-nfs-2 
 

mountPath: /usr/share/busybox 
 

Execute the following command: 

# kubectl create -f busybox-nfs.yaml 

This will create a second pod, running in the same namespace as the Nginx pod, however we are using the same backing 

store by using the same claim name. A lot of information can be gathered regarding the newly created pod as shown 

below, but some useful information is highlighted below: 

# kubectl describe pod busybox-nfs 
 
 
Name:busybox-nfs 
 
Namespace:default  
Node: sn1-c08-caas-08/10.21.200.68 

Start Time: Mon, 07 Sep 2020 06:27:13 -0700 

Labels: <none>  
Annotations: <none>  
Status: Running 

IP: 10.233.121.142 

Containers:   
busybox-nfs:   
Container ID: docker://92bbe9949f7ba6251a9035fc33567a2067e3fa422d01014747402d66f9628655 

Image:  busybox 

  



TECHNICAL WHITE PAPER  

 

  
 

27 

Image ID:  docker-  
pullable://busybox@sha256:cb63aa0641a885f54de20f61d152187419e8f6b159ed11a251a09d115fdff9bd 

Port: <none>  
Host Port: <none>  
State: Waiting  
Reason: CrashLoopBackOff  

Last State: Terminated  
Reason: Completed  
Exit Code: 0  
Started: Mon, 07 Sep 2020 06:27:40 -0700  
Finished: Mon, 07 Sep 2020 06:27:40 -0700  

Ready: False  
Restart Count: 2  
Environment: <none>  
Mounts:  
/usr/share/busybox from pure-nfs-2 (rw)  
/var/run/secrets/kubernetes.io/serviceaccount from default-token-7v5xw (ro)  

Conditions:  
Type Status  
Initialized True  
Ready False  
PodScheduled True  

Volumes:  
pure-nfs-2:  
Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same 
namespace)  
ClaimName: pure-nfs-claim  
ReadOnly: false  

default-token-7v5xw:  
Type: Secret (a volume populated by a Secret)  
SecretName: default-token-7v5xw  
Optional: false  

QoS Class: BestEffort  
Node-Selectors: <none> 
 

It can be seen that both the nginx and busybox pods are using the same storage claim that is attached to the same NFS 

mount point on the backend, but each pod is actually running on a different node in the Kubernetes cluster. 

  



TECHNICAL WHITE PAPER  

 

  
 

28 

Adding Nodes to a Kubernetes Cluster 

This reference implementation is large enough to provide enough resources to run a few simple applications (see 

Appendix). However, as a cluster becomes more utilized, it may be necessary to provide additional application or 

infrastructure nodes to support other resource requirements. 

There are processes for adding additional nodes to a Kubernetes cluster, and they are well documented within the main 

Kubernetes documentation set. Still, it is essential to cover how to ensure that additional nodes have the ability to utilize the 

Pure Storage arrays as providers of stateful storage. 

When it comes to ensuring your new node can access stateful storage on Pure Storage devices, it is good to note that, as 

we are using a DaemonSet to ensure that our plugin is correctly installed on cluster nodes, the addition of a new cluster 

node to your Kubernetes cluster will cause the DaemonSet to create a new pure-csi pod on the new node and install the 

plugin correctly. 

Conclusion 

With the growth of applications and deployments that require a CaaS platform that can also provide an underlying stateful 

storage solution, the Pure Storage Kubernetes plugin meets these needs. 

Additionally, using Pure Storage products to provide stateful storage also enables storage that is enterprise-ready, 

redundant, fast, resilient, and scalable. 

Appendix: Application Examples 

Here we show two simple application deployments that can be used in a Kubernetes environment that would also require 

stateful storage. 

MongoDB 

Running MongoDB in a HA configuration is a good example of how, using pre-existing Helm charts, you can easily deploy a 

production ready application seamlessly using Kubernetes StatefulSets with Pure Service Orchestrator providing the 

persistent storage from a Pure Storage FlashArray. 

Here we are going to us a ‘stable’ Helm chart to create a MongoDB deployment using ReplicaSets. The database will be 

deployed with a primary and two secondary pods, each having their own persistent volume. To show that MongoDB 

replication is working we will add some data into the database on the primary and then read it from one of the secondaries. 

Notice that we only need to supply the name of the storageClass to the Helm configuration because the statefulSet comes 

with a template for creating new PVCs as the deployment scales. 

  



TECHNICAL WHITE PAPER  

 

  
 

29 

# kubectl create namespace caas-mongo 
 
# helm install --set "auth.adminUser=admin, auth.adminPassword=password, 
persistentVolume.storageClass=pure" stable/mongodb-replicaset 
 
NAME:   caas-mongo  
LAST DEPLOYED: Mon Sep  7 07:37:31 2020 
 
NAMESPACE: default  
STATUS: DEPLOYED 

 
RESOURCES:   
==> v1/ConfigMap   
NAME DATA AGE 

caas-mongo-mongodb-replicaset-init 1 0s 

caas-mongo-mongodb-replicaset-mongodb 1 0s 

caas-mongo-mongodb-replicaset-tests 1 0s 
 
==> v1/Service      
NAME TYPE CLUSTER-IP  EXTERNAL-IP PORT(S) AGE 

caas-mongo-mongodb-replicaset ClusterIP None <none> 27017/TCP 0s 

==> v1beta2/StatefulSet      
NAME DESIRED CURRENT AGE   
caas-mongo-mongodb-replicaset 3 1 0s   
 
==> v1/Pod(related)       
NAME  READY STATUS RESTARTS AGE  
caas-mongo-mongodb-replicaset-0 0/1 Init:0/3 0 0s  
# kubectl get pvc       
NAME   STATUS VOLUME  CAPACITY 

ACCESS MODES   STORAGECLASS   AGE       
datadir-caas-mongo-mongodb-replicaset-0 Bound pvc-3ff67917-9986-11e8-9b47-0025b5c0807f 10Gi 

RWO pure 47m      
datadir-caas-mongo-mongodb-replicaset-1 Bound pvc-5ca21b0f-9986-11e8-9b47-0025b5c0807f 10Gi 

RWO pure 46m      
datadir-caas-mongo-mongodb-replicaset-2 Bound pvc-770a92f6-9986-11e8-9b47-0025b5c0807f 10Gi 

RWO pure 45m      
 

 

   

Figure 6. MongoDB Stateful Sets 



TECHNICAL WHITE PAPER  

 

  
 

30 

  

Here we’ll access the Primary server for the MongoDB deployment and add some simple entries into the database. 

# kubectl exec -it caas-mongo-mongodb-replicaset-0 -- mongo --host caas-mongo-mongodb-
replicaset MongoDB shell version v3.6.6 

connecting to: mongodb://caas-mongo-mongodb-replicaset:27017/ 
 
MongoDB server version: 3.6.6 

Welcome to the MongoDB shell. 

rs0:PRIMARY> db.products.insert({manufactirer:'Pure Storage', 

product:'FlashArray'}) WriteResult({ "nInserted" : 1 }) 
 
rs0:PRIMARY> db.products.insert({manufactirer:'Pure Storage', 

product:'FlashBlade'}) WriteResult({ "nInserted" : 1 }) 
 
rs0:PRIMARY> db.products.find() 
 
{ "_id" : ObjectId("5b68602213827b834aa4a62e"), "manufactirer" : "Pure Storage", "product" : "FlashArray" } 
 
{ "_id" : ObjectId("5b68602a13827b834aa4a62f"), "manufactirer" : "Pure Storage", "product" : "FlashBlade" 

} rs0:PRIMARY> exit 

Now, let's interrogate one of the secondary nodes to ensure the data has been correctly replicated. 

# kubectl exec -it caas-mongo-mongodb-replicaset-1 -- mongo --
eval="rs.slaveOk(); db.products.find().forEach(printjson)" 
 
MongoDB shell version v3.6.6  
connecting to: mongodb://127.0.0.1:27017  
MongoDB server version: 3.6.6  
{  

"_id" : ObjectId("5b68602213827b834aa4a62e"),  
"manufactirer" : "Pure Storage",  
"product" : "FlashArray"  

}  
{ 

 
"_id" : ObjectId("5b68602a13827b834aa4a62f"),  
"manufactirer" : "Pure Storage",  
"product" : "FlashBlade"  

} 

  

Figure 7. MongoDB Persistent Volume Claims 



TECHNICAL WHITE PAPER  

 

  
 

31 

WordPress 

In this example we are using another ‘stable’ Helm chart to deploy WordPress, the content management system. The chart 

will be used to deploy a production-ready configuration with three WordPress pods, as well as a MariaDB deployment for 

the database requirements of the WordPress application. 

The MariaDB deployment will use a persistent volume from a FlashArray and the WordPress pods will all use the same 

ReadWriteMany persistent volume made available from a FlashBlade. 

The production-values.yaml was copied from the Helm chart github and the following simple modifications were made to 

ensure the required storage comes from the FlashArray and FlashBlade: 

 
# kubectl create namespace caas-wordpress 
 
# helm install -f ./wordpress-production.yaml 
stable/wordpress NAME: caas-wordpress 

LAST DEPLOYED: Mon Sep  7 08:50:07 2020 
 
NAMESPACE: default 
 
STATUS: DEPLOYED 

 
RESOURCES:         
==> v1beta1/Deployment         
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE  
caas-wordpress-wordpress 3 3  3  0 1s  

==> v1beta1/StatefulSet         
NAME DESIRED CURRENT  AGE     
caas-wordpress-mariadb 1 1  1s     

==> v1beta1/Ingress         
NAME HOSTS   ADDRESS PORTS  AGE  
wordpress.local-caas-wordpress  wordpress.local 80, 443 1s   

==> v1/Pod(related)         
NAME    READY STATUS  RESTARTS AGE 

caas-wordpress-wordpress-5b45fc89c5-dtz8q 0/1 ContainerCreating 0 1s 

caas-wordpress-wordpress-5b45fc89c5-f52xq 0/1 ContainerCreating 0 1s 

caas-wordpress-wordpress-5b45fc89c5-ntds9 0/1 ContainerCreating 0 1s 

caas-wordpress-mariadb-0    0/1 ContainerCreating 0 1s 

==> v1/Secret         
NAME TYPE DATA AGE     
caas-wordpress-mariadb Opaque 2 1s      
caas-wordpress-wordpress Opaque 2 1s      
 
==> v1/ConfigMap   
NAME DATA AGE 

caas-wordpress-mariadb 1 1s 

caas-wordpress-mariadb-tests 1 1s 



TECHNICAL WHITE PAPER  

 

  
 

32 

 
==> v1/PersistentVolumeClaim      
NAME STATUS VOLUME CAPACITY  ACCESS MODES  STORAGECLASS  AGE 

caas-wordpress-wordpress Pending pure-file 1s    

==> v1/Service       
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE 

caas-wordpress-mariadb ClusterIP 10.233.9.205 <none> 3306/TCP 1s 

caas-wordpress-wordpress ClusterIP 10.233.35.83 <none> 80/TCP,443/TCP 1s 

 

Looking at the Kubernetes dashboard we can see the persistent volumes associated with the deployment. 

 

And also the four pods that have been created: 

 

If we examine the MariaDB pod, we will see it is using the persistent volume from the FlashBlade: 

 

And looking at one of the WordPress pods we can see it is using the ReadWriteMany volume from the FlashBlade: 

 



TECHNICAL WHITE PAPER  

 

purestorage.com 800.379.PURE 

PS1901-02 10/2020 

©2020 Pure Storage, the Pure P Logo, and the marks on the Pure Trademark List at https://www.purestorage.com/legal/productenduserinfo.html are trademarks of 
Pure Storage, Inc. Other names are trademarks of their respective owners. Use of Pure Storage Products and Programs are covered by End User Agreements, IP, 
and other terms, available at: https://www.purestorage.com/legal/productenduserinfo.html and https://www.purestorage.com/patents  

The Pure Storage products and programs described in this documentation are distributed under a license agreement restricting the use, copying, distribution, and 
decompilation/reverse engineering of the products. No part of this documentation may be reproduced in any form by any means without prior written authorization 
from Pure Storage, Inc. and its licensors, if any. Pure Storage may make improvements and/or changes in the Pure Storage products and/or the programs described 
in this documentation at any time without notice. 

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED 
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT 
SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN 
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS 
SUBJECT TO CHANGE WITHOUT NOTICE. 

Pure Storage, Inc. 
650 Castro Street, #400 
Mountain View, CA 94041 

About the Author 

As Technical Director of New Stack, Simon is responsible for managing the direction of Pure Storage pertaining to Open 

Source technologies including OpenStack, containers, and associated orchestration and automation toolsets. His 

responsibilities also include developing best practices, reference architectures, and configuration guides. 

With over 30 years of storage experience across all aspects of the discipline, from administration to architectural design, 

Simon has worked with all major storage vendors’ technologies and organisations, large and small, across Europe and the 

USA as both customer and service provider. 

Read Simon’s blog 

http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents
http://purestorage.com/
https://twitter.com/PureStorage
https://www.facebook.com/PureStorage/
https://www.youtube.com/user/purestorage
mailto:info@purestorage.com
https://www.linkedin.com/company/pure-storage/
tel:8003797873
http://www.purestorage.com/blog/author/simon

	Containers  as a Service

