
TECHNICAL WHITE PAPER

Direct to Object
with FlashBlade
and Veeam
Backup &
Replication V12
Implementation and best practices for protecting
physical and virtual environments

Uncomplicate Data Storage, Forever 2

TECHNICAL WHITE PAPER

Contents
Introduction ...3

Object Storage ...3

FlashBlade..6

Hardware Architecture ..6

Purity FlashBlade OS ...8

Object Store on FlashBlade ..8

Implementation Guidelines ..10

FlashBlade Bucket Configuration ..10

Veeam Backup & Replication V12 ..13

Object Repository Configuration ...13

Conclusion ..16

About the Author ...17

Appendix A ...17

Uncomplicate Data Storage, Forever 3

TECHNICAL WHITE PAPER

Introduction
In today’s data-driven world, IT managers and data protection practitioners face increasing challenges to ensure business

continuity while protecting their organizations’ critical data. As businesses adopt hybrid cloud strategies to manage ever-growing

data volumes, data protection must evolve to meet these challenges. A new Pure Storage® data protection solution powered

by Pure Storage® FlashBlade® and Veeam Backup & Replication V12 introduces new Direct-to-Object (D2O) enhancements,

eliminating the need for additional storage gateways or intermediate backup repositories to streamline the backup process and

provide a more cost-effective backup solution.

This white paper provides an in-depth analysis of object storage, Pure Storage FlashBlade Object capabilities, and Veeam Backup

& Replication V12 Direct-to-Object repository feature. Targeted at backup administrators and IT managers, the objective of this

paper is to educate readers about this new capability, its benefits, and how it can be utilized to optimize their data protection

strategies. This document draws from official Pure Storage, Amazon S3, and Veeam documentation and best practices to give a

comprehensive understanding of the solution enhancement feature and serve as an Implementation Guide.

Object Storage

Object storage is a modern and innovative data storage solution designed to address the challenges of handling massive amounts

of unstructured data and scalability in the age of big data and cloud computing.

Traditional file and block storage systems were designed to handle structured data and hierarchical file systems. However, they

have inherent limitations that object storage was created to address:

• Scalability: Object storage systems are inherently architectured to scale horizontally and vertically to accommodate capacity

and performance.

• Performance: Performance can degrade traditional storage systems as the number of files and directories increase, leading

to longer access times and reduced throughput. Object storage systems, in contrast, maintain consistent performance levels

even with a large number of objects due to their distributed architecture, flat address space, and GUID-based addressing.

• Efficiency: Traditional storage systems generally rely on RAID (redundant array of independent disks) for data protection.

However, RAID can be less efficient and more prone to failure when dealing with large-scale data storage. Object storage

systems use erasure coding that allows for more granular control of fault tolerance and storage efficiency than RAID. This

provides higher storage efficiency, and higher levels of durability and data protection than some RAID levels.

• Data management: Traditional file systems rely on file names and directory structures, making it challenging to manage

and search for data efficiently. Object storage uses rich metadata associated with each object, enabling advanced data

management and search capabilities that streamline processes and improve accessibility.

• Accessibility: Traditional storage systems typically lack standardized APIs, making it more challenging for developers to

integrate storage into applications and workflows. Object storage provides simple and standardized RESTful APIs that enable

seamless integration with applications, improving accessibility and compatibility.

• Cost-effectiveness: Due to their inherent scalability, object storage systems typically reduce the overall cost of ownership.

The pay-as-you-grow model1 allows organizations the flexibility to only pay for what they need, reducing upfront costs.

Uncomplicate Data Storage, Forever 4

TECHNICAL WHITE PAPER

Object Storage Architecture

The concept of "objects" lies at the core of object storage. An object is a discrete unit of data that consists of three main

components:

1.	 Data: The actual content of the object, usually in the form of unstructured data

2.	 Metadata: Descriptive information about the object, such as creation date, object size, content type, and custom attributes

defined by the user

3.	 Unique identifier: A globally unique identifier (GUID) which allows the system to locate and manage the object, regardless of

its physical location

Objects are stored in a flat address space, meaning that there are no hierarchies of directories, which allows for easy retrieval.

Here is an overview on the process of how an object is stored:

1.	 Object creation: When an object is created, it is assigned a unique identifier or key. This key is generated either by the

storage system or provided by the user.

2.	 Metadata assignment: Metadata is created for the object, which includes information such as object size, creation date, and

content type. Users can also add custom metadata to describe the object’s content or other relevant attributes.

3.	 Data partitioning: The object data is divided into chunks, which can be stored across multiple storage devices or nodes. This

partitioning helps with load balancing, fault tolerance, and data redundancy.

4.	 Data placement: Using the unique identifier, the object storage system determines where to store the object chunks. This

process usually involves algorithms like erasure coding to ensure data durability and redundancy.

When a user or application requires access to an object, they provide the unique identifier to the object storage system. The

system then retrieves the object’s metadata and data chunks, reassembles the object, and returns it to the user or application.

This architecture enables virtually unlimited scalability and eliminates the need for complex directory structures.

Object Versioning

Versioning is a feature in object storage systems that allows you to preserve, retrieve, and restore every version of an object,

providing a way to track changes, recover from accidental deletions or modifications, and maintain a history of the object’s state

over time.

Without versioning, an update overwrites the object, and the previous version of the object is lost. Similarly, when an object is

deleted, it is permanently removed from the storage system.

With versioning enabled, changes are tracked with the version ID, which is separate from the object’s GUID.

• When an object is updated or modified, instead of overwriting the existing object, the storage system creates a new version

of the object, preserving the previous version(s).

• When an object is deleted, the storage system inserts a delete marker object, with the same object Key, but with a few

key differences indicating that it is a placeholder for a deleted object. The object size is 0, indicating that there is no data

associated with the object. The version ID is incremented, indicating that this is a new version of the object, even though

Uncomplicate Data Storage, Forever 5

TECHNICAL WHITE PAPER

there is no data associated with it. Finally, there is no content type or other metadata associated with the object, since it is

just a placeholder for a deleted object.

• The delete marker object becomes the new current version of the object. When listing objects in the storage system, the

deleted object will not appear. However, users or applications can list and retrieve all the versions of an object using the

object key and version identifier. This enables access to historical versions if needed.

• If versioning is disabled, it does not delete the existing versions. However, any new updates or deletions will overwrite the

object as if versioning was not enabled.

• Version cleanup policies can be put in place by users or applications to reduce storage costs and clutter. They automatically

delete older versions of objects after a specified period or transition them to different storage classes for long-term archiving.

Object Lock

Object Lock is a feature that allows users to create an immutable version of an object for a specific period of time. Once Object

Lock is enabled, modifications to the locked object are controlled by the retention mode.

Retention mode deals with changes to retention settings of an object. If retention mode is not set, an object’s retention can be

changed at any time irrespective of retention period. Object Lock supports two kinds of retention modes:

• Governance mode: In governance mode, the retention period for an object cannot be changed or deleted by any user,

including the owner of the object. This mode is typically used in scenarios where regulatory requirements mandate that data

be kept immutable for a specified period of time. Governance mode is often referred to as "write once, read many" (WORM)

mode.

• Compliance mode: In compliance mode, the retention period for an object can be extended, but it cannot be shortened or

deleted even by the owner of the object. This mode is typically used in legal scenarios where data may be subject to legal

hold or other types of litigation.

Both governance and compliance modes enforce the immutability of data by preventing the object from being deleted or modified

until the retention period expires or the legal hold is released. These modes provide a high degree of data protection and help

ensure that data is stored securely and in compliance with applicable regulations and policies.

With respect to Object Lock, versioning provides a mechanism for the storage system to maintain multiple versions of an object,

including the version of the object that is locked. Therefore, it is important to highlight that Object Lock does not prevent the

creation of new versions of an object. If a new version of a locked object is created, the lock applies only to the original version, a

new lock would be needed on the new version of the object.

Buckets

A bucket is a logical container, user-defined namespace within the object storage system. Versioning and Object Lock are

features applied on the bucket, not the individual objects.

Uncomplicate Data Storage, Forever 6

TECHNICAL WHITE PAPER

FlashBlade
FlashBlade is a unified fast file and object (UFFO) storage technology that can support thousands of clients while simultaneously

hosting numerous file systems and multi-tenant object stores. FlashBlade is an all-flash, scale-out storage solution that is

powered by a distributed metadata architecture, designed for enormous concurrency across all data types. FlashBlade can

expand up to multi-petabyte capacity with linear-scale performance. It is regarded as a data hub because of its inherent scale-out

design and ability to drive performance for any type of task. It allows companies to consolidate a variety of workloads on a single

platform, from backups to analytics and AI.

FIGURE 1  FlashBlade Unified Fast File and Object Storage Platform

Many organizations currently use FlashBlade to store their data protection backups, taking advantage of fast backup and restore

performance while investing in a platform that also consolidates data lakes and other data silos.

Hardware Architecture

FlashBlade offers a unique, modular architecture that enables organizations to unlock new levels of power, space, and

performance efficiency using an all-QLC design. The architecture disaggregates compute resources from storage, so that

capacity and compute can scale independently for extreme flexibility in configuration. FlashBlade is a customizable platform that

enables you to tailor your configuration for current workload requirements and non-disruptively upgrade to meet future needs. You

can upgrade components on a schedule that is consistent with changing technologies to future-proof the system.

Uncomplicate Data Storage, Forever 7

TECHNICAL WHITE PAPER

FIGURE 2  FlashBlade//S components

• Chassis: The FlashBlade chassis is 5RU high and has bays for mounting up to 10 blades. Fully populated with high-density

blades, a chassis holds 1.92PB of physical flash with headroom for future density increases.

The chassis midplane distributes power and contains dual Ethernet links capable of operating at 100- Gbps to each blade.

Blades connect to two Fabric I/O Modules (FIOMs) on the midplane. The FIOMs contain Ethernet switches that connect

blades to the client network, or in multichassis systems, to eXternal Fabric Modules (XFMs). In multi-chassis systems, the

XFMs connect the chassis to each other and to clients.

• Blades: Each blade contains CPU, NICs, DRAM, and a minimum of one—and up to four—DirectFlash® Module (DFM)

mounting slots. Blades use NVMe over on-board PCIe to communicate with their DFMs. A blade can be configured with either

performance-optimized (24TB) or capacity-optimized (48TB) DFMs. Blades will operate with one, two, three, or four DFMs

installed. All blades in the chassis must be configured with the same number of DFMs in each blade.

• DFMs with QLC flash: Architectures that use off-the-shelf, solid-state drives (SSDs) have an internal controller to manage

the flash media on each specific drive. These systems do not have any visibility into what is happening at the system level.

FlashBlade takes a different and innovative approach with proprietary DirectFlash modules (DFMs) that enable the storage

operating system to manage the media on a global level. Global media management unlocks as much as 20% more capacity

from NAND, compared to systems that use off-the-shelf SSDs, and delivers more consistent performance, better reliability,

and higher media endurance without the need for a massive and expensive storage class memory (SCM) cache.

• Networking: The integrated networking in FlashBlade simplifies large-scale deployments by collapsing three networks (front-

end, control, and back-end) into one high-performance, software-defined networking (SDN) fabric. This SDN is shared across

the two fabric modules in the platform, and it hides the complexity of networking from the administrator.

FlashBlade virtualizes the network, so that no matter the size of the platform, it appears as one entity. This virtualization

simplifies load balancing and cabling. Each blade can service and restart any client connection and run any protocol, and the

platform is stateless because the logic can run anywhere.

Uncomplicate Data Storage, Forever 8

TECHNICAL WHITE PAPER

Dual Fabric I/O Modules (FIOMs) interconnect blades, connect chassis (in multi-chassis systems), and connect blades to

clients. The FIOMs have ethernet switches with eight (8) external ports each capable of 10, 25, 40, or 100 Gbps transmission

rates. The switches have a total of 2TBps cross-sectional bandwidth. Each FIOM uses 50Gbps for interblade communication

in the chassis. Both FIOM switches and blade NICs are capable of 100Gb/s for future expansion.

• Expansion: FlashBlade includes four base models that cover the space from ultra-dense to ultra-high performance. For

efficient storage utilization, the minimum chassis configuration for all models include seven blades. As stated earlier, systems

can be expanded by adding DFMs to blades, by adding blades to the chassis, and by adding additional chassis, either to

initial configurations or as post-deployment upgrades.

FlashBlade supports multi-chassis configuration and expandable up to five chassis—that’s 9.6PB capacity and 300GB/s

throughput performance.

Purity FlashBlade OS

With the Purity//FB operating environment, FlashBlade hardware becomes a highly scalable UFFO storage system. It supports

NFS, SMB, and HTTP protocols for file access, with access to objects via S3 APIs. Both file and object services are native, based

on a common underlying key-value store; there is no protocol-on-protocol layering in Purity//FB.

Purity//FB’s internal metadata structures are designed to accommodate tens of billions of files and/or objects, with a high degree

of concurrency that exploits all system hardware resources regardless of client I/O load. Data layouts are designed to be resilient

in the face of component failures, while at the same time automatically balancing utilization across all system resources.

Object Store on FlashBlade

Purity//FB supports an object store that provides client access to buckets of objects. It associates each bucket with an account

that is also associated with users, each having access permissions to some or all of the account’s object data.

• Accounts and users: Accounts define logical containers, or tenants, which are administrative entities that organize an object

store’s buckets and control client access to them. Administrators create users within accounts and assign policies that grant

them permissions to perform actions on buckets and objects.

Purity//FB generates and uses access key pairs, each consisting of an access key ID and a secret access key, to authenticate

users, or applications.

• Access policies: Administrators assign one or more access policies to each user to specify the permissible operations on

buckets and objects. Policies grant rights to:

 − Display bucket information (e.g., list properties)

 − Control buckets (e.g., enable/suspend versioning)

 − Read, write, and delete individual objects

• Buckets: These are the upper level of the two-level S3 object hierarchy. Each object belongs to a single bucket, and each

bucket is associated with a single account. Purity//FB tracks the number of objects in each bucket, the amount of physical

flash they occupy, and each bucket’s overall data compression ratio.

Administrators and users with the appropriate bucket control policy enabled may destroy buckets. Destroyed buckets are

inaccessible by clients but are retained internally for possible recovery for 24 hours after which the software permanently

eradicates them.

Uncomplicate Data Storage, Forever 9

TECHNICAL WHITE PAPER

• Versioning: Purity//FB supports versioning of objects on a per-bucket basis. When versioning is enabled, overwriting an

object creates a new current version, and retains previous versions per the bucket’s lifecycle rules. Administrators or users

with the appropriate bucket control policy enabled may enable versioning for a bucket. Once enabled, versioning can be

suspended but not disabled.

Administrators can use lifecycle rules to limit retention of object versions. Rules specify either how long Purity//FB should

retain objects or a date on which it should delete them. A rule can apply to an entire bucket, or its scope may be limited to

objects whose IDs begin with a specified prefix.

• Replication: Purity//FB can optionally replicate bucket contents to corresponding buckets on one or two target FlashBlade

systems, or to the Amazon Web Services public cloud. The software replicates individual objects asynchronously as updates

occur. The CLI and GUI display the latest completed object replication and the replication backlog for each bucket.

• Object lock: Purity//FB supports object lock data protection and management framework, providing features like retention

mode, and retention period that help protect the locked versions of objects in accordance with regulatory and compliance

requirements. Purity//FB, goes one step further with Freeze Locked Objects capability. While object lock protects versioned

objects from immediate and permanent data loss, it is unable to protect objects created in a bucket with versioning disabled.

Freeze locked objects, will extend retention mode, and retention period capability on those unversioned objects, providing

the same immutability against immediate deletion, or alteration. Once enabled, Freeze Locked Objects can only be revoked

by contacting Pure Storage Technical Support.

• Retention lock: An even further layer of protection is provided by Purity/FB. Retention lock protects the bucket from

permanent deletion by privileged users. Retention lock is not the same as Object Lock. While Object Lock protects a specific

version of the object, based on life cycles rules managed by an external application like Veeam Backup & Replication V12, or

internally managed by the FlashBlade Administrator. Retention lock is a bucket level protection:

 − Prevents an administrator or privileged user from destroying the bucket if the bucket has any objects, even if those

objects are marked for deletion.

 − If bucket level retention is used (default is 0), it prevents an administrator or privileged user from reducing bucket level

retention.

 − Prevents an administrator or privileged user from disabling object versioning.

 − Prevents deletion of buckets via S3 scripts. Buckets can only be deleted via Purity//FB administrative interfaces and are

not eradicated until their respective eradication pending periods have elapsed.

 − Once enabled, retention lock can only be altered, or revoked by contacting Pure Storage Technical Support.

Retention Lock provides extra security for the on-premise Object storage from inadvertently, or maliciously wiping the company’s

most valuable asset, their data. Therefore it’s recommended to enable Retention Lock.

FlashBlade hardware and Purity//FB software are indeed “future proof.” The hardware design anticipates future component

developments, but more importantly for users, FlashBlade shows that the Purity//FB software architecture delivers scalability that

realizes the potential of whatever technologies comprise the hardware on which it runs.

Uncomplicate Data Storage, Forever 10

TECHNICAL WHITE PAPER

Implementation Guidelines
Coupled with Veeam Backup & Replication V12 (VBR), Pure Storage FlashBlade delivers on the promise of cloud-like simplicity and

agility with consistent high performance, predictable Recovery Point Objectives (RPOs), and low Recovery Time Objectives (RTOs)

for the most critical workloads.

(Figure 3), illustrates the FlashBlade, powered by Veeam Backup & Replication V12, high level solution for VMware infrastructure,

but equally applies to Microsoft Hyper-V infrastructure as well.

While installing the Pure Universal API (USAPI) plug-in, for VMware workloads, is optional, it enables VBR to orchestrate hardware

based snapshots of the source Data Stores if they reside on Pure Storage FlashArray™, and If VBR proxies are Fibre channel or

iSCSI capable. This enables VBR to backup directly from the Pure Storage FlashArray storage, alleviating backup traffic off the

production VM Network.

FIGURE 3  FlashBlade powered by Veeam Backup and Replication V12 Solution

FlashBlade Bucket Configuration

Pure Storage FlashBlade can be managed with a web-based graphical user interface (GUI), remote Secure Shell command-line

interface (CLI), or programmatically using a rich library of application programmable interfaces (APIs). We will be using the GUI for

demonstrations.

In FlashBlade GUI, click on the Storage menu item. Click on the Object Store tab, this is where you can manage all object storage

related tasks.

https://lucid.app/lucidchart/55c9bc79-40f4-46c3-92e3-6a064995d409/edit?page=0&v=7244&s=560

Uncomplicate Data Storage, Forever 11

TECHNICAL WHITE PAPER

Object Store Accounts

Accounts tile, is where to create an object store account. Creating a bucket on FlashBlade starts by creating an object store

account. This account is an internal container used by FlashBlade to manage multi-tenancy. You can have up to 2000 Object store

accounts. Object store accounts are not visible or used by applications consuming the bucket(s).

FIGURE 4  Create Object Store Account Dialog box

Click on (+), Create an Account dialog box (Figure 4), allows you to choose a Name for the object store account, the name must

be between three and 63 characters of only lower case letters, numbers and ’-’. It should begin and end with a lowercase letter or

number. The name cannot contain two consecutive ’-’ and cannot be a 12 digit number.

You can also set soft, and hard quota limits. Soft quota limits set the usage threshold at which alerts are raised, and hard limits set

the usage limit at which all writes are halted until usage decreases below the set limit.

Quota Limit, sets limits at the object store account level and supersedes Bucket Default Quota Limit which is the per bucket

quota limit. If all buckets under an object store account have collectively exceeded the account’s hard limit, writes to any bucket in

that account will be halted regardless of their set hard limits. Click the Create button to save changes.

Users, Permissions, and Access Keys

Click the object account just created to drill into the tenants properties.

Here is where you can create users, access keys, and buckets. You can

add up to 100 users per object store bucket.

Click (+) in the Users tile (Figure 5). A wizard for creating a user, access

keys, and permissions will start.

1.	 Create User dialog box (Figure 6). Add the appropriate name in the

User Name field, and click the Create button.

2.	 The Add Access Policies to user dialog box (Figure 7) will open. You

can set the permissions the user is allowed to perform against the

bucket and its objects in this window. While it’s possible to use the

already predefined access policies, it’s recommended to create an

access policy with all required permissions2.

3.	 Click the Add button to save selections.

4.	 Add Access Key to user dialog box (Figure 8).

FIGURE 5  Tenant screen Dialog box

FIGURE 6  Create User Dialog Box

FIGURE 7 Access permissions for user dialog box

Uncomplicate Data Storage, Forever 12

TECHNICAL WHITE PAPER

In this window, you have the option to Create or Import an Access Key.

If you select Create a new key, you will be prompted to copy the key/

secret to clipboard, or download a csv or json copy3.

Creating a Bucket

Open the FlashBlade GUI, Click the Storage -> Object Store.

In Accounts Tile, select the appropriate tenant.

Navigate to the Buckets tile (Figure 9).

Click (+) to open the Create Bucket window (Figure 10). Bucket names

should not contain uppercase letters; only “-”, and numbers are allowed.

You can set a soft, or hard quota on the created bucket. If Quota Limit

is left empty, the bucket will inherit the object store account (Tenant)

Bucket default quota limit setting, if its enabled.

Enable Object Lock

Object Lock, and consequently VBR, requires versioning to be enabled

on the object bucket.

On the FlashBlade GUI, Click Storage -> Object Store tab, select the

appropriate Object Store Account. Identify the appropriate bucket

name, and select (⋮) on the right hand side of the bucket row, within

Buckets tile (Figure 11).

In the Edit Bucket dialog window (Figure 12) set the following:

• Versioning: enabled (required by VBR)

• Expand Retention Settings

 − Object Lock: checked

 − Freeze Locked Objects: default unchecked.

 − Default Retention: none.

 − Default Retention Mode: none.

 − Retention Lock: ratcheted (locked)

VBR will manage default retention and the default retention mode.

FlashBlade can provide even more protection on buckets, and objects with Retention Lock. Retention Lock has two modes:

FIGURE 8  Access Key dialog box

FIGURE 11  Editing Bucket dialog box

FIGURE 12  Editing Bucket dialog box

FIGURE 10  Create Bucket dialog box

FIGURE 9  Buckets Tile

Uncomplicate Data Storage, Forever 13

TECHNICAL WHITE PAPER

• Un-locked mode (default mode).

• Ratcheted (locked) mode.

 − Buckets can only be destroyed when empty.

 − Automatic bucket eradication is disabled.

 − Changes to retention mode, and retention periods are disabled.

Bear in mind, any changes to Retention Lock requires contacting Pure Storage Technical support.

Click the Save button to apply the changes. Now, the S3 bucket is ready to be consumed by VBR.

Data Network

Accessing a bucket requires at least one valid data virtual IP address (data vip). Data-VIPs are configured through the FlashBlade

GUI, Settings –> Network → Subnets & Interfaces4. Data-VIPs can also be configured through CLI6.

Veeam Backup & Replication V12

Organizations generate large amounts of new data every day, and its backups must be stored somewhere. Veeam Backup &

Replication V12 brings an object-first approach, simplifying the backup infrastructure. The large amounts of backup data can

be stored efficiently with FlashBlade’s highly scalable hardware and software architecture. VBR can establish thousands of

connections to FlashBlade to handle massive amounts of backup and recovery jobs efficiently.

Object Repository Configuration

Object Repository setup on VBR follows the same approach as all other VBR repositories.

1.	 First, make sure that you have the necessary credentials and permissions to access the FlashBlade bucket created in the

previous section.

2.	 In the VBR console on the navigation panel, select Backup Infrastructure down in the views section. Hover the mouse over

the working area, right-click, select Add Object Storage Repository. Adding Storage repository wizard will start.

3.	 Choose S3 Compatible, next, enter a name, and description for your repository. Leave limit concurrent tasks unchecked.

Click Next.

4.	 Under Service Point, provide the FlashBlade data virtual IP address (data vip), or FQDN if the data-vip is configured in DNS.

a.	 You don’t need to provide “https:// …” as VBR will handle that automatically. VBR will only connect to the

S3 bucket over SSL.

5.	 Region is a required free-text field. It is typically used for on-premise object storage to denote data center location.

6.	 Credentials: Using the Add button, provide the Access Key and Secret Key generated in the previous section by FlashBlade.

Uncomplicate Data Storage, Forever 14

TECHNICAL WHITE PAPER

7.	 Connection Mode: (Figure 13) Defines how VBR will connect to the

FlashBlade object bucket backup repository:

a.	 Direct: Any backup job controlled by VBR server5 will be able to utilize

the proxy server(s) to transfer VM Backups or file share backups to

FlashBlade object storage repository.

Proxy server(s), must have network access to the FlashBlade data-VIP

(Service Point), otherwize the backup job will fail. Object bucket

credentials will be shared with the proxy server(s) at the start of the

backup job.

b.	 Through a gateway server: VM Backups or file share backup data will

be sent to the FlashBlade Object Repository through a Veeam Gateway

Server. VBR will determine which Gateway Server(s) to use from the list

of configured VBR infrastructure Gateway Servers6.

8.	 Click the Next button. VBR will may prompt you to accept the untrusted certificate if the FlashBlade doesn’t have a properly

signed certificate7,8.

9.	 In the bucket configuration dialog window, you will need to configure:

a.	 Bucket: Click on the Browse button to list the bucket created previously.

b.	 Folder: Specify the folder where backups will be stored. Click Browse and select a folder if you already created one. You

can also create a new folder by clicking the New Folder button. Click OK to save the selection.

c.	 Limit Object Storage Consumption to (# TB): Provide a soft quota on the bucket to help with storage spending, partic-

ularly in the public cloud. This is a user preference. It’s helpful to set an upper value on the bucket from within VBR since

the AWS S3 API does not provide the mechanism to report on object bucket consumption.

d.	 Make recent backups immutable for (# days): VBR will check whether versioning and Object Lock are enabled. If Object

Lock and versioning are not detected, VBR will not allow you to define the immutability period.

The general recommendation is to have an immutability period the same or lower than the retention period defined in

the backup job. VBR will automatically add 1 to 10 days on top of what the user defined for immutability to objects still

needed within the defined retention period, this setting is called block generation9.

10.	 Click Next to configure the Mount Server.

11.	 Mount Server dialog window requires you to specify a server you will be using to mount VM disks directly from the object

storage repositories to the VMware environment. Mount Server will present itself as an NFS Server serving a Datastore

named “VeeamBackup_{MountServer}” to the VMware environment, with VM disks objects streamed from the object storage

repository.

12.	 The Instant recovery write cache folder field is necessary to track changes made to VMs recovered with VBR Instant

Recovery feature7.

13.	 VBR will automatically configure a helper appliance service to perform health checks and validity of the objects for every

Object bucket. The Configure button will allow you to change the default server to another managed server in the VBR

infrastructure.

14.	 Click the Next button, then Apply button to proceed with creating the object repository.

FIGURE 13  Connection Mode

Uncomplicate Data Storage, Forever 15

TECHNICAL WHITE PAPER

Repository Permissions for Veeam Agents

You must set up access permissions to the Object Repository if you intend to backup virtual and physical machines with

VeeamAgents in direct connection mode.

Veeam Agents communicate with the object storage using one of the following modes:

• Gateway server: With this connection mode, Veeam Agents access object storage through a Gateway server. Access to

object storage is managed by a Gateway Server assigned in the VBR console. Backup data is sent from the Veeam Agent

computer to the Gateway Server, then from the Gateway Server to the object storage.

• Direct: Veeam Agents access object storage directly. Backup data is sent from the Veeam Agent computer to the object

storage. Permissions to the Veeam Agent’s access to object storage is managed by the VBR Server.

To grant access permissions to Veeam Agents:

1.	 Navigate to Backup Infrastructure View.

2.	 On the inventory pane, click on Backup Repositories.

3.	 Right-click on the appropriate object repository and select Access Permissions (Figure14).

4.	 Under the Security Tab, choose Agents share credentials to direct storage

repositories [direct to object (Figure 15)].

Note: Veeam Backup & Replication V12, can also integrate with IAM/STS10 to

access the object storage repository in direct mode. As of the writing of the

document, this feature is not yet supported by Pure Storage FlashBlade.

5.	 Under the Standalone Applications Tab (Figure 16), choose Allow to everyone.

If you want only specific users to be able to run backups, click the Add button to

add the necessary users and groups to the list.

Note: If you’re using a SOBR, then only the Standalone Applications option will be

available in Access Permissions. The Security Tab will be under the specific Object

repository configured within that SOBR.

FIGURE 14  Access Permissions

FIGURE 15  Security

FIGURE 16  Security

Uncomplicate Data Storage, Forever 16

TECHNICAL WHITE PAPER

Scale-out vs. Traditional Object Repositories

With a FlashBlade//S200 (4X24x10), and VBR n12, we were able to observe how the FlashBlade balanced the workload across all

its components eliminating the need to use multiple data-VIPs. There were no observed performance differences between Scale-

Out or Simple repository architectures.

• Throughput: The scale-out backup repository (SOBR) tested consists of four object buckets, with four data-VIPs, and

performed almost identical to using a single object bucket. VBR Proxy Servers established 100s of concurrent connections

(5000+ in total), balanced across all FlashBlade nodes.

• Backup: A capacity impact test pushed FlashBlade to near 50% full with VM backup data (100+TB after VBR compression) to

measure how VBR balancing the capacity across multiple object buckets with a SOBR could possibly yield better performance

rather than just Single Object Bucket. Again, there was no difference in performance between the two configurations.

• Restore: Using SOBR Object Repositories could be advantageous with restores. Since each object bucket requires a

VBR Mount Server, it helps to have multiple Mount Servers involved, especially when restoring a large number of VMs.

Capacity Consumption with Object vs. File Repositories

It is important to note that the actual difference in capacity consumption between traditional and object repositories will depend

on various factors, including backup policies, data types, and the efficiency of deduplication and compression.

With a traditional backup repository, VBR stores the backup files in a deduplicated and compressed proprietary format with the

extension .vbk (for full backups) and .vib (for incremental backups). These files contain the backed-up data, along with metadata

about the backup job. On restore, VBR will recall the needed files, unwrap compression and deduplication, and present the VM

data back to VMWare.

With an object backup repository, there is no concept of files, VBR stores the backup data as deduplicated and compressed

objects. On restore, VBR will stream the needed objects based on an optimized index, and present the VM data back to VMWare.

The Storage Optimization settings inside of a backup job are directly related to the space consumed by the backup object in

the case of an object repository, or space consumed by the backup file in the case of file repository. Stored file, or object, is

deduplicated and compressed (default settings). For example, if the storage optimization setting is 1MB (the recommendation),

it means the backup object or file will be constructed with up to 1MB in size, before data reduction. Stored object or file, will be

smaller than 1MB, depending on the amount of data reduction observed.

With forever forward incrementals, both File and Object repositories have shown to consume comparable storage capacity.

Conclusion
Veeam Backup & Replication V12’s object first approach unlocks the full capabilities of Pure Storage FlashBlade. The solution

provides robust and efficient modern data protection. Veeam’s ease-of-use, mobility with self-describing backup objects,

managed immutability, and intelligent tiering, can ensure the security and availability of organizations critical data.

Meanwhile, the high-performance and scalability of FlashBlade combined with the Pure Storage commitment to maintain ease of

manageability enhances this partnership by accelerating the backup and recovery process. Altogether, this powerful partnership

offers organizations a comprehensive and reliable data protection solution, ensuring business continuity and minimizing the risks

associated with data loss and downtime.

Uncomplicate Data Storage, Forever 17

TECHNICAL WHITE PAPER

About the Author
Tamer Swidan is a senior solution architect with Pure Storage. He is responsible for defining Pure Storage

solutions and reference architectures for protecting and recovering primary workloads such as Oracle, SQL, and

VMware. Tamer has 21 years’ experience working in and with data protection hardware and software solutions,

serving as an end user, a subject matter expert consultant, and data protection solution architect.

Appendix A

Configure Object Access Policy for Veeam Backup & Replication V12

FlashBlade Policies for Object storage, provides granular permissions on objects, and buckets, to further restrict users to what

they need to do, rather than providing full access.

The following steps, provide an example on how to configure granular permissions to the Veeam Backup & Replication user, in

order to properly manage the Object Repository.

• From the FlashBlade GUI, click on Policies, then click on

the Object Store tab.

• On Object Store Access Policies tile, Click (+)

• Dialog Box: Step 1: Create Object Store Access Policy,

opens

 − Account: From the pull-down menu, select the Object

Store Account.

 − Name: Provide a name for the access policy,

(recommend VBR-Repository)

• Click Create.

Uncomplicate Data Storage, Forever 18

TECHNICAL WHITE PAPER

purestorage.com 800.379.PURE

PS2432-01-en 05/23©2023 Pure Storage, Inc. All rights reserved. Pure Storage, the P logo mark, FlashArray, FlashBlade, and Evergreen are
trademarks or registered trademarks of Pure Storage, Inc. All other names may be trademarks of their respective owners.

• Dialog Box: Step 2: Add Rule to Policy …, opens:

 − Name: Provide a rule name (Recommend VBRAccess).

 − Effect: Defines whether the permissions are to deny,or,

allow access.

 − Actions: will contain a list of all S3 object permissions

currently available. Click on (+).

 − List of S3 permissions required:

 − s3:AbortMultipartUpload

 − s3:CreateBucket

 − s3:DeleteBucket

 − s3:DeleteObject

 − s3:DeleteObjectVersion

 − s3:GetBucketLocation

 − s3:GetBucketVersioning

 − s3:GetObject

 − s3:GetObjectLegalHold

 − s3:GetObjectLockConfiguration

 − s3:GetObjectRetention

 − s3:GetObjectVersion

 − s3:ListAllMyBuckets

 − s3:ListBucket

 − s3:ListBucketMultipartUploads

 − s3:ListBucketVersions

 − s3:ListMultipartUploadParts

 − s3:PutLifecycleConfiguration

 − s3:PutObject

 − s3:PutObjectLegalHold

 − s3:PutObjectRetention

 − Click the Add button to commit changes

Optional Conditions include additional granular controls, like only allow certain source IPs to access the bucket, or allow or deny

access to only certain objects in the bucket.

1 Learn more about the Pure Storage Evergreen® storage program.

2 Please refer to Appendix-A for the specific permissions needed and steps on how to configure Access Policies.

3 Once you close this window, you will no longer be able to see the secret key ID, you will have to create a new Access Key/Secret.

4 Refer to FlashBlade user’s Guide for Steps on how to setup a Data-VIP.

5 As compared to backup jobs controlled by Veeam Agents running in managed mode.

6 For more details, and limitations, please refer to VBR User Guide for VMware vSphere.

7 Please refer to the “Array Certificates” section on the FlashBlade user’s Guide for instructions on how to import properly signed certificates.

8 If you click “Continue”, VBR will disable self-signed certificates after some time, therefore, if you don’t intend on installing a properly signed certificate, it would be advantageous to click on “View”, and install the

self-signed certificate.

9 For more details on Block Generation please refer to Block Generation - User Guide for VMware vSphere (veeam.com).

10 For details on IAM/STS please refer to Access Permissions - User Guide for VMware vSphere (veeam.com)

https://www.purestorage.com
tel://18003797873
https://www.linkedin.com/company/pure-storage
https://twitter.com/purestorage
https://www.youtube.com/user/purestorage
https://www.facebook.com/PureStorage
mailto:info%40purestorage.com?subject=
https://www.purestorage.com/products/staas/evergreen.html
https://support.purestorage.com/@api/deki/files/44550/FlashBlade_410_User_Guide.pdf#page=284
https://helpcenter.veeam.com/docs/backup/vsphere/compatible_repository_account.html
https://support.purestorage.com/@api/deki/files/44550/FlashBlade_410_User_Guide.pdf#page=284
https://helpcenter.veeam.com/docs/backup/vsphere/block_gen.html?zoom_highlight=block+generation&ver=120

	Introduction
	Object Storage

	FlashBlade
	Hardware Architecture
	Purity FlashBlade OS
	Object Store on FlashBlade

	Implementation Guidelines
	FlashBlade Bucket Configuration
	Veeam Backup & Replication V12
	Object Repository Configuration

	Conclusion
	About the Author
	Appendix A

