

TECHNICAL WHITE PAPER

Highly Available
Jenkins at Scale
with Portworx
Enterprise and
AWS EKS
Gain an enterprise-grade CI/CD platform in the cloud.

TECHNICAL WHITE PAPER

 2

Contents
About Jenkins ...3

Introduction ..3

Reference Architecture Diagram ..4

Prerequisites...4
AWS EC2 Instance Sizing... 4
Utilities ... 4

Configuring AWS EKS and Portworx ... 5

Installing and Configuring Portworx on Amazon EKS..9
Install the Portworx Operator .. 9

Prepare Cluster for Installing Jenkins ... 14
Controller StorageClass ..15
Agent StorageClass ...15
AutoPilot Rules (Optional) ...16
Recommended AutoPilot Rule ... 17

Deploy Jenkins to Your Portworx-enabled EKS Cluster .. 17

Deploy and Configure a Disaster Recovery Site .. 18
Prepare Your AWS Cloud for Disaster Recovery ...19
Create a Cluster Pair and Admin Namespace ..19

Install and Configure PX-Backup ... 24
Installation ... 24
Configure PX-Backup ... 26

Configure Your First Backup Job ... 30

Solution Testing and Validation ... 33
Functional Testing: Jenkins Controller HA Failover Test .. 33
Jenkins HA Failover ... 34
Portworx Backup and Recovery UI .. 35
Backup and Restore Jenkins ... 36
Validate DR Replication Failover Preparedness .. 41

Conclusion ... 44

Appendix: Additional Testing .. 45

TECHNICAL WHITE PAPER

 3

About Jenkins

Jenkins is an industry-standard tool used by the DevOps community to orchestrate and schedule
software build processes and continuous integration and continuous delivery (CI/CD) pipelines.
Jenkins' architecture of controller and agent nodes lends itself well to dynamic environments, like
those available in the public cloud such as Amazon Web Services (AWS). With the accelerated
adoption of containers and new automation and orchestration tools like Kubernetes, developers are
turning more frequently to managed solutions like Amazon Elastic Kubernetes Service (Amazon EKS).
This ability to automate software builds, testing, quality checks, and continuous deployment brings
great flexibility to how Jenkins can be leveraged. The flexibility of the cloud-native technologies has
brought dramatic improvements in "time to value," as well as providing both the development and
deployment environments for the enterprise.

Introduction

Running production-grade and enterprise-ready Jenkins in the cloud requires an elastic, resilient, and fault-tolerant

architecture. Jenkins agents are very memory- and IO-intensive workloads and the on-demand nature of the cloud is ideal for

this. However, the need for high-performance access to data and automating processes around both provisioning and

protecting that data has driven many organizations to choose between high availability (HA) or performance. Amazon Elastic

Block Store (Amazon EBS)volumes are an ideal option to meet the performance requirements of a CI/CD pipeline, but they are

bound by the borders of the availability zone (AZ) where they were created. Customers trying to implement HA workloads in

the cloud can benefit from Portworx® solutions to enable cross-AZ replication, business continuity, and data protection with a

cloud-native approach. Portworx by Pure Storage® provides an automation and orchestration layer for data management that

allows enterprises to maintain the high availability they need while running Jenkins on EBS.

Portworx is a data management solution that serves applications and deployments in Kubernetes clusters. Portworx itself is

deployed natively within Kubernetes and extends the automation capabilities down into the infrastructure to remove the

complexities of managing data. Portworx provides simple and easy-to-consume storage classes that are usable by stateful

applications in a Kubernetes cluster. In AWS, Portworx does this by claiming EBS volumes that are attached to the worker

nodes of a Kubernetes cluster (EC2 instances). These volumes are then abstracted by the Portworx data management control

plane to deliver a storage pool that offers and automatically provisions container granular volumes from these available

resources. When an application like Jenkins creates a persistent volume claim (PVC) with a Portworx storage class, Portworx

will automatically provision container volumes and address the capacity, level of performance, data protection, security, and

availability required for the application. Portworx is topology-aware and ensures that as part of the provisioning process, a

replica of the data is maintained on another node in another availability zone. In the event of a failure, Portworx influences the

Kubernetes scheduler to restart Jenkins in another AZ alongside the replicated data in a matter of seconds. With Portworx,

clusters can be highly dense, meaning that you can greatly scale the number of containers per host. While the

recommendation from Kubernetes is 100 pods per VM, Portworx has customers routinely running 200-300 pods per host.

TECHNICAL WHITE PAPER

 4

Data protection is critical for any IT endeavor, but traditional, virtual-machine-based data protection solutions have proven

inadequate for providing recoverable backups of Kubernetes workloads. Built exclusively for containerized applications,

Portworx PX-Backup solves these shortfalls and protects your applications, including data, application configuration, and

Kubernetes objects. It does this with a single click at the Kubernetes pod, namespace, or cluster level. Enabling application-

aware, zero-data-loss backup and fast recovery for even complex distributed applications, PX-Backup delivers true multi-

cloud availability.

Reference Architecture Diagram

Below is the reference architecture for AWS EKS and Portworx.

Figure 1. Portworx reference architecture.

Prerequisites

AWS EC2 Instance Sizing

The instances used with Portworx must be sized to handle both the storage operations as well as the applications you will be

deploying to the cluster. For Portworx, we recommend four vCPUs, 4GB of RAM, and 10Gbit networking at a minimum. We

recommend using these as a baseline, and then factor in your application needs. In this example, we chose M5.xlarge

instances (four vCPUs, 16GB RAM, 10G network) for Portworx, Jenkins, and agent pods to use. Your workload needs may vary.

Utilities

To complete the steps outlined in this guide, you will need to install and configure the following utilities:

TECHNICAL WHITE PAPER

 5

AWS CLI v2: This is the primary component for interacting with AWS Cloud resources from the command line, and it will be

needed for additional utilities to handle authentication from your management workstation. Additional information and

installation instructions are available at https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html.

EKSCTL: This utility was developed for managing EKS clusters, and it is used here to deploy EKS resources. To install the

latest release of eksctl, follow the instructions at https://eksctl.io/introduction/#installation.

KUBECTL: This is the primary CLI utility for Kubernetes, and it will be used extensively in this guide. You can install it using the

instructions here: https://kubernetes.io/docs/tasks/tools/.

HELM v3: Helm is a popular package manager and deployment tool for Kubernetes, allowing application developers to

package applications in a templated format enabling consistent deployments with all the necessary components included.

Helm v3 should be installed based on the instructions at https://helm.sh/docs/intro/install/.

Configuring AWS EKS and Portworx

Documentation on creating a Portworx-enabled EKS cluster can be found on the Portworx website at

https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/. Portworx can also be deployed easily via the AWS

Marketplace located here: https://portworx.com/awsmarketplace.

The recommended method to deploy a Portworx-enabled EKS environment is to use the eksctl utility and provide a

configuration file. The reference guide can be found here: https://docs.portworx.com/portworx-install-with-

kubernetes/cloud/aws/aws-eks/eksctl/eksctl-operator/.

Depending on the performance needs and the number of simultaneous agent tasks an organization might decide to run,

implementing Portworx on EKS provides the flexibility to grow your development environment as your needs change. This

unique functionality allows optimal resource use and provides true flexibility in how the deployment operates and scales. The

number of storage nodes is entirely configurable. It is defined in the eksctl configuration file and can be adjusted to suit your

needs at the time of deployment or modified later as utilization might change.

Here is a link to the available deployment architectures to help guide your decision: https://docs.portworx.com/cloud-

references/deployment-arch/.

The first step involves granting Portworx permissions to create and attach EBS volumes. It is a critical step. To keep this

process simple, we suggest implementing this at the instance level with an identity and access management (IAM) policy

attached through the eksctl configuration file.

In the example config.yaml file below, the name of the segment identifier (SID) is set to "EKSPortworxEC2mgmt". The

Amazon resource name (ARN) is then included as part of the configuration for your node groups so the provisioned hosts can

perform the required tasks.

The IAM policy can be created using the AWS CLI or IAM console. In the console, select the option to create a new IAM policy.

Navigate to the JSON tab and define your policy. Here is an example IAM policy that includes all the needed permissions:

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://eksctl.io/introduction/#installation
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/
https://portworx.com/awsmarketplace
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/eksctl/eksctl-operator/
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/eksctl/eksctl-operator/
https://docs.portworx.com/cloud-references/deployment-arch/
https://docs.portworx.com/cloud-references/deployment-arch/

TECHNICAL WHITE PAPER

 6

{
 "Version": "2012-10-17",
 "Statement": [
 {

 "Sid": " EKSPortworxEC2mgmt",
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:ModifyVolume",
 "ec2:DetachVolume",

 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteTags",
 "ec2:DeleteVolume",
 "ec2:DescribeTags",
 "ec2:DescribeVolumeAttribute",

 "ec2:DescribeVolumesModifications",
 "ec2:DescribeVolumeStatus",
 "ec2:DescribeVolumes",
 "ec2:DescribeInstances",
 "autoscaling:DescribeAutoScalingGroups"
],

 "Resource": [
 "*"
]
 }
]
}

If you are also deploying Portworx PX-Backup, then also create the following IAM policy using the JSON tab. This policy is

named "EKS_PXBackup_Permissions"' for this example.

{

 "Version": "2012-10-17",
 "Statement": [
 {

 "Sid": "EKS_PXBackup_Permissions",
 "Effect": "Allow",

 "Action": [
 "ec2:DeleteSnapshot",
 "ec2:DescribeInstances",
 "ec2:CreateTags",

TECHNICAL WHITE PAPER

 7

 "ec2:CreateSnapshots",
 "ec2:DescribeVolumes",
 "ec2:CreateSnapshot",
 "ec2:DescribeRegions",

 "ec2:DescribeSnapshots",
 "ec2:CreateVolume"
],
 "Resource": "*"
 }
]

}

Once the policies have been created, create your cluster. Note that the resulting IAM policies are attached to the node group

in the eksctl configuration file below.

Deploy EKS cluster using a variation of the following config.yaml file:

NOTE: Values in <brackets> should be changed to reflect your needs.

NOTE: For NodeGroup a minimum of three storage nodes are required. These can perform both workload and storage

operations. More than three can be allocated based on a customer's need; however, it is recommended that the number of

storage nodes per availability zone be changed in the Portworx spec generator or example file below to reflect any changes to

the total number of storage nodes.

apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
 name: <Cluster Name>

 region: <Region>
 version: 1.20
iam:
 withOIDC: true
addons:
- name: vpc-cni

 attachPolicyARNs:
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
managedNodeGroups:
 - name: storage-node
 instanceType: <m5.xlarge> # Select Instance type with minimum 4 vCPUs, 8Gi of Memory, and 10Gbit
networking for optimal performance

 minSize: 3 # Minimum configuration - Change to suite needs
 maxSize: 3 # Storage Nodes Min and Max must be set to equal values
 volumeSize: 30
 #ami: auto

TECHNICAL WHITE PAPER

 8

To deploy a new EKS cluster using the above configuration, save the file with the name cluster-config.yaml and issue the

following command: eksctl create cluster -f cluster-config.yaml.

Allow up to 30 minutes after issuing the command to create your EKS cluster for it to become available in your AWS account.

There are additional components that may be needed for a production-ready EKS cluster, so please consult Amazon's

documentation for items like the ALB/ELB Load Balancer Controller, CertManager, and ExternalDNS for Route53.

iam:

 withOIDC: true
addons:
- name: vpc-cni
 attachPolicyARNs:
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
managedNodeGroups:

 - name: storage-node
 instanceType: <m5.xlarge> # Select Instance type with minimum 4 vCPUs, 8Gi of Memory, and 10Gbit
networking for optimal performance
 minSize: 3 # Minimum configuration - Change to suit needs
 maxSize: 3 # Storage Nodes Min and Max must be set to equal values
 volumeSize: 30

 #ami: auto
 amiFamily: AmazonLinux2
 labels: {role: worker, "portworx.io/node-type": "storage", "px/metadata-node":"true"}
 tags:
 nodegroup-role: worker
 ssh:

 allow: true
 # Set to the path for your key file. See eksctl documentation for more details.
 publicKeyPath: < $HOME/.ssh/id-rsa.pub >
 iam:
 attachPolicyARNs:
 - arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy

 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
 - arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly
 - arn:aws:iam::aws:policy/ElasticLoadBalancingFullAccess
 - arn:aws:iam::<AWSAccountNumber>:policy/EKSPortworxEC2mgmt
 # If you are also installing PX-Backup, also create the optional IAM Policy above and add it here
also.

 - arn:aws:iam::<AWSAccountNumber>:policy/EKS_PXBackup_Permissions
 withAddonPolicies:
 imageBuilder: true
 autoScaler: true
 ebs: true
 fsx: true

 efs: true
 albIngress: true
 cloudWatch: true
availabilityZones: ['<region-AZ1>', '<region-AZ2', 'region-AZ3']

TECHNICAL WHITE PAPER

 9

Installing and Configuring Portworx on Amazon EKS

This section provides a walkthrough of the steps to install and configure Portworx on Amazon EKS; however, before

proceeding, we recommend that you read the full documentation and instructions on the Portworx website

https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/. For additional information and options, the

documentation website provides extensive resources for you to explore. Also, be sure to review all volume sizes and types in

this document and adjust them to reflect your workloads. They are provided as examples and are likely to not align exactly

with your needs.

Install the Portworx Operator
To install the Portworx Operator, run kubectl create -f https://install.portworx.com/2.7?comp=pxoperator.

Once the operator is installed, we need to provide a specification file to deploy the Portworx cluster. Navigate to

https://central.portworx.com to generate the needed Kubernetes manifest that you will deploy to your cluster. We have also

included an example specification that you can deploy, but using the Portworx spec generator is preferred.

First, you will need to create an account on the Portworx website and log in. After logging in to the website, you are presented

with the spec generator wizard. On the first tab, select Portworx Enterprise and click > Next in the bottom left corner.

On the next page , you’ll find the basic configuration options.

https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/
https://install.portworx.com/2.7?comp=pxoperator
https://central.portworx.com/

TECHNICAL WHITE PAPER

 10

On this page, make the following selections:

1. Select Use the Portworx Operator.

2. For Portworx Version, select the latest available version (presently 2.7).

Click Next, and you are presented with the storage options. The following steps are for an example configuration for AWS:

make sure that the volume type and size are appropriate for your deployment:

1. Select Cloud, and then select AWS.

2. Configure storage devices:

a. Select Create Using a Spec.

b. Under Select EBS Volume Type, select GP2 or IO1.

NOTE: When selecting cloud volume configurations, consider your workloads and the characteristics of the available

drive. GP2 provides a solution for balancing cost and performance. IO1 is recommended for production workloads that

need a consistent input/output operations per second (IOPS) and throughput.

c. Size: 500

d. Max storage nodes per availability zone: 1

e. Select Auto create journal device.

TECHNICAL WHITE PAPER

 11

3. Click Next to proceed to the network setup.

On this page, unless you have configured multiple network interfaces on your EKS hosts, all values can be left at the default

values.

Click Next to continue to the Customize page:

1. At the top of the page, select Amazon Elastic Container Service for Kubernetes (EKS).

2. For environment variables, add ENABLE_ASG_STORAGE_PARTITIONING = true if you are using Auto Scaling groups.

3. Under Advanced Settings, select the following:

a. Select Enable Stork.

b. If needed based on your use case, select Enable CSI.

TECHNICAL WHITE PAPER

 12

c. Select Enable Monitoring.

4. In Cluster Name Prefix, enter an appropriate value, such as the cluster name. .

5. In Secret Store Type, you can select your Kubernetes Secrets, but Portworx can also leverage AWS's KMS service,

Hashicorp Vault, or other standard KMS solutions.

Click Finish and agree to the licensing agreement to generate the manifests and spec files.

TECHNICAL WHITE PAPER

 13

The next page provides the instructions to install Portworx into your EKS cluster.

The first step on this page was covered previously, and it is not necessary to repeat the instructions.

Once the operator has been deployed, you can apply your StorageCluster specification by copying and pasting the command

shown here on the page:

Finally, you are given the option to save the spec files in PX Central for later reference or reuse by entering a name and any

relevant tags, and then clicking Save Spec.

Below is an example specification for StorageCluster that you can use. Simply save it in a file named storagecluster.yaml and

apply it to the cluster. The Portworx Operator will handle the rest of the deployment. It takes approximately 5-10 minutes for

Portworx to fully initialize the cluster.

TECHNICAL WHITE PAPER

 14

Prepare Cluster for Installing Jenkins
To prepare the cluster to install Jenkins, first create a new namespace in your EKS cluster to run Jenkins: kubectl create

namespace Jenkins.

Now that Portworx is installed and the StorageCluster object has been defined, create two Kubernetes StorageClass objects

for Jenkins. The first will be used for the controller pods and the second for agent pods.

kind: StorageCluster

apiVersion: core.libopenstorage.org/v1
metadata:
name: px-cluster-jenkins
namespace: kube-system
annotations:
 portworx.io/is-eks: "true"

spec:
 image: portworx/oci-monitor:2.7.2
 imagePullPolicy: Always
 kvdb:
 internal: true
 cloudStorage:

 deviceSpecs:
 - type=gp2,size=500
 journalDeviceSpec: auto
 kvdbDeviceSpec: type=gp2,size=150
 maxStorageNodesPerZone: 3
 secretsProvider: k8s

 stork:
 enabled: true
 args:
 webhook-controller: "true"
 autopilot:
 enabled: true

 providers:
 - name: default
 type: prometheus
 params:
 url: http://px-prometheus:9090
 env:

 - name: "ENABLE_ASG_STORAGE_PARTITIONING"
 value: "true"
 monitoring:
 prometheus:
 enabled: true
 exportMetrics: true

TECHNICAL WHITE PAPER

 15

Controller StorageClass

The first step to create a StorageClass object for the controller pods is to create and save a file named controller-sc.yaml and

apply it using kubectl. The contents of this file should be:

Next, create a file named controller-pvc.yaml with the following contents:

kind: PersistentVolumeClaim

apiVersion: v1
metadata:
 name: jenkins-home-pvc
 namespace: jenkins
 labels:
 app: jenkins

annotations:
 volume.beta.kubernetes.io/storage-class: px-sharedv4-sc
spec:
 accessModes:
 - ReadWriteMany
 resources:

 requests:
 storage: 100Gi

This will create a ReadWriteMany volume, which can be used for both active and active-passive Jenkins controller

deployments.

Agent StorageClass
To create a StorageClass object for agent pods, create and save a file named jenkins-agent-sc.yaml and apply it using

kubectl. The contents of this file should be:

kind: StorageClass
apiVersion: storage.k8s.io/v1

metadata:

kind: StorageClass

apiVersion: storage.k8s.io/v1
metadata:
 name: px-sharedv4-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "3"

 sharedv4: "true"
 sharedv4_mount_options: "vers=4.0"
 io_profile: db_remote
allowVolumeExpansion: "true"

TECHNICAL WHITE PAPER

 16

 name: jenkins-agent-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "1"

 priority_io: high
allowVolumeExpansion: "true"

AutoPilot Rules (Optional)

To allow your EKS cluster to dynamically grow your persistent volume claims, you will need to define the AutoPilot rules. There

are two rule types that you can define:

• Storage pool capacity rule: This rule allows Portworx to allocate additional EBS volumes automatically through monitoring

and API calls. This rule is optional and should be used for workloads where there is not a clear understanding of the

storage needs.1

• Persistent volume claim rule: This type of rule allows the PVC for your Jenkins controller to dynamically grow, allowing

you to start small and expand it within the bounds of your Storage Pool based on utilization or a user-defined limit. It is

highly recommended that you use this rule for Jenkins deployments.

Please note the thresholds and capacity controls to ensure you are optimizing your pool of resources for your workload.

Below is an example of an optional AutoPilot storage pool rule.

apiVersion: autopilot.libopenstorage.org/v1alpha1
kind: AutopilotRule
metadata:
 name: pool-expand

spec:
 enforcement: required
 ##### conditions are the symptoms to evaluate. All conditions are AND'ed conditions:
 expressions:
 # pool available capacity less than 70%
 - key: "100 * (px_pool_stats_available_bytes / px_pool_stats_total_bytes)"

 operator: Lt
 values:
 - "70"
 # pool total capacity should not exceed 2TB
 - key: "px_pool_stats_total_bytes / (1024*1024*1024)"
 operator: Lt

 values:
 - "2000"
 ##### action to perform when condition is true
 actions:

1Pool-level capacity management with Autopilot requires additional licensing.

TECHNICAL WHITE PAPER

 17

 - name: "openstorage.io.action.storagepool/expand"
 params:
 # resize pool by scalepercentage of current size
 scalepercentage: "50"

 # when scaling, add disks to the pool
 scaletype: "add-disk"

Recommended AutoPilot Rule

The following AutoPilot rule for resizing the Jenkins controller volume PVC is recommended:

apiVersion: autopilot.libopenstorage.org/v1alpha1
kind: AutopilotRule
metadata:
 name: volume-resize
spec:
 ##### selector filters the objects affected by this rule given labels selector:

 matchLabels:
 app: jenkins
 ##### namespaceSelector selects the namespaces of the objects affected by this rule
 ##### conditions are the symptoms to evaluate. All conditions are AND'ed conditions:
 # volume usage should be less than 70%
 expressions:

 - key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)"
 operator: Gt
 values:
 - "70"
 ##### action to perform when condition is true
 actions:

 - name: openstorage.io.action.volume/resize
 params:
 # resize volume by scalepercentage of current size
 scalepercentage: "50"
 # volume capacity should not exceed 400GiB
 maxsize: "400Gi"

Deploy Jenkins to Your Portworx-enabled EKS Cluster

At this point, you are now ready to install Jenkins. Jenkins is packaged in a Helm chart for easy deployment.

Next, add the Jenkins repository to your Helm installation with the following commands:

helm repo add jenkinsci https://charts.jenkins.io
helm repo update

TECHNICAL WHITE PAPER

 18

Then you will need to obtain the values.yaml file from the Helm chart with the following command:

curl -o jenkins-values.yaml \ https://raw.githubusercontent.com/jenkinsci/helm-
charts/main/charts/jenkins/values.yaml

Review the contents of the values.yaml file for any customizations you may need. To complete the setup of Jenkins with

Portworx, create an override-values.yaml file with the following contents. Other customizations may be needed to

accommodate your CI/CD pipeline.

controller:
 initializeOnce: true
schedulerName: "stork"
agent:

 fsgroup: 1000
 volumes:
 - type: PVC
 claimName: jenkins-home-pvc
 mountPath: /var/jenkins_home
 readOnly: false

 workspaceVolume:
 - type: DynamicPVC
 storageClassName: jenkins-agent-sc
 requestSize: 20
 accessModes: ReadWriteOnce
persistence:

 enabled: true
 existingClaim: jenkins-home-pvc

To deploy using these settings, issue the following command: helm install jenkins -f values.yaml -f override-

values.yaml jenkinsci/jenkins -n jenkins

This will deploy Jenkins to your cluster with Portworx orchestrating your storage operations. Follow the instructions provided

at the end of the install to obtain the URL and username/password to access your Jenkins environment.

IMPORTANT: Jenkins uses a Config Map to maintain the configuration during pod restarts. It is highly advised that you

review the "Configuration as Code" section under "Managing Jenkins" in the Jenkins UI and use it as a reference to

keep the Config Map consistent with your running configuration. If you chose not to do this, some configuration

changes can be lost if the pod restarts.

Deploy and Configure a Disaster Recovery Site

Portworx provides a true disaster recovery (DR) and business continuity (BC) solution with the ability to replicate your

applications between two different EKS clusters in different availability zones or regions, or other variations of Kubernetes that

might live outside the Amazon ecosystem. Using this capability allows businesses to ensure that their most critical applications

are always available.

TECHNICAL WHITE PAPER

 19

Portworx Enterprise can provide both synchronous and asynchronous disaster recovery configurations, allowing you to build a

DR/BC capability for almost any scenario. Metro-DR, or synchronous replication, requires a connection between the sites with

adequate bandwidth and a maximum of 10ms latency between the EKS hosts. This is only achievable using a single region and

multiple availability zones. This can offer cost savings, but it lacks true business continuity if the selected region suffers a

catastrophic event.

For this white paper, region-to-region DR was selected as the preferred DR solution. This is configured as Async-DR using our

3D-Snapshot capabilities that include the Kubernetes objects and manifests that are needed, along with the data volumes to

maintain an application-consistent DR site. Replication schedules are configurable by the cluster administrator and offer as low

as a 10-minute recovery point objective (RPO) and the ability to restore service in minutes.

Prepare Your AWS Cloud for Disaster Recovery

Portworx Disaster Recovery–enabled clusters use an S3 bucket as an intermediary storage location that is accessible from

both EKS clusters. As part of the configuration process, we use an AWS access key and a secret key. To ensure that you

maintain a secure environment, it is best practice and strongly recommended that a separate IAM identity is created for this

purpose. The identity should have the two IAM policies defined at the beginning of this guide attached to it, as well as policies

allowing interaction with S3. Once you have created this identity and created access and secret keys, make sure to save them

for future use in this white paper. When AWS account information is part of a step, please use this new IAM Identity to satisfy

the requirements.

To configure Disaster Recovery, first select a second region and deploy a similar EKS cluster. The most important factor is that

you need at least three storage nodes to accommodate the configuration used in the Jenkins home directory storage class. If

look back, you will see that a replication factor of three is used to ensure the highest availability.

You can follow the above instructions to deploy a second cluster by changing the values necessary to reflect the use of a

different region. Once that is done, it is necessary to create a VPC peering connection or transit gateway to allow connectivity

between the clusters. See the links below to determine which will work best in your environment. Also, be sure to add rules to

the security groups associated with both clusters to allow bidirectional communication. Once connectivity has been verified,

you are ready to create a cluster pair and configure replication. For more information on VPC peering, see

https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html. For more information on transit

gateways, see https://docs.aws.amazon.com/vpc/latest/tgw/tgw-getting-started.html.

Create a Cluster Pair and Admin Namespace

To begin pairing the two clusters for replication, first establish an admin namespace. This is recommended so cluster

administrators can replicate any namespace in the cluster without having to have full access to the kube-system namespace.

Here are the instructions to configure and begin using an admin namespace with Portworx Enterprise:

1. First, obtain the storkctl command-line utility from either cluster using the platform-specific instructions found on the

Portworx documentation site. There are instructions for Linux, macOS, and Windows available. More information is available

at: https://docs.portworx.com/portworx-install-with-kubernetes/disaster-recovery/async-dr/.

2. Once you have the storkctl utility installed, you then need to provide credentials to Stork so it can access the needed

resources for migrations. Use the IAM Identity's credentials in your AWS account, and ensure that this account has the

same roles that were applied to the EKS clusters during deployment.

https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-getting-started.html
https://docs.portworx.com/portworx-install-with-kubernetes/disaster-recovery/async-dr/

TECHNICAL WHITE PAPER

 20

IMPORTANT: Until otherwise instructed, the following steps must be performed on both the source and destination

clusters.

3. Create a Kubernetes namespace to serve as the admin namespace: kubectl create namespace migrations

4. Next, create a secret in this new namespace using the AWS access key ID and secret access key created for the

previously discussed IAM Identity. You should receive confirmation that the Kubernetes secret was created.

kubectl create secret generic --from-literal=aws_access_key_id=<AWS_ACCESS_KEY_ID> --from-
literal=aws_secret_access_key=<AWS-SECRET-ACCESS_KEY> -n kube-system aws_creds

5. Edit the StorageCluster object in the kube-system namespace and add a volumeMount for the newly created secret. To
edit the StorageCluster object, run kubectl edit stc -n kube-system.

6. Move down through the manifest and find the stork: configuration and modify it to look like the following:

 stork:
 args:

 admin-namespace: migrations
 health-monitor-interval: "30"
 webhook-controller: "true"
 enabled: true
 volumes:
 - mountPath: /root/.aws/

 name: aws-creds
 readOnly: true
 secret:
 secretName: aws-creds

Upon saving the changes to the StorageCluster object, a new replica set will be created and the Stork pods will restart to

implement the changes in a rolling update.

7. On the destination cluster obtain the Cluster ID by issuing the following command:

Copy the output to a notepad-type app for use in the following steps. It will be referenced as <destination_cluster_uuid>.

To use the Portworx CLI, you can either log into one of your worker nodes and run the command from /opt/pwx/bin/ where it is

located, or more conveniently create a local alias to access the CLI tool from inside a Portworx pod. For Linux or macOS, add

the following to your shell configuration file (bash, zsh, etc.)

PX_POD=$(kubectl get pods -l name=portworx -n kube-system -o jsonpath='{.items[0].metadata.name}')
&& kubectl exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl status | grep UUID | awk '{print $3}'

export PX_POD="$(kubectl get pods -l name=portworx -n kube-system -o
jsonpath='{.items[0].metadata.name}')"
alias pxctl="kubectl exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl"

TECHNICAL WHITE PAPER

 21

8. Now provide Portworx with the IAM Identity's AWS credentials. The command to use is:

As a reminder, all steps for creating a cluster pair to this point must be performed on both the source and destination clusters.

The only exception is the command to obtain the Cluster ID.

IMPORTANT: The following steps will be performed on specific clusters.

9. To create the cluster pair, on the destination cluster, first, run this command and pipe it to a file for editing: storkctl

generate clusterpair -n migrations remotecluster >> clusterpair.yaml.

Once the file has been created, edit the file and replace the contents of 'options' in the file with the following.

10. To obtain the cluster token, run the following on the destination cluster: pxctl cluster token show. Use the output

for the token requested above. Once the file has been modified, you will apply it to the source (production) cluster using:
kubectl apply -f clusterpair.yaml
You can check the status of the cluster pair with: storkctl get clusterpair -n migrations. The output should

look like this:

Next, create a schedule policy for the replication. This is where you can configure how frequently the DR replication occurs.

Currently, our shortest supported interval is every five minutes, resulting in an RPO of approximately 10 to 15 minutes.

Below is an example SchedulePolicy manifest that configures replication every 15 minutes, as well as a daily, weekly, and

monthly example. Configure the replication interval based on your business needs and RPO policies. Multiple schedules can be

created if different applications have different requirements.

2 Disaster recovery mode requires licensing additional features; please contact Portworx for more information. This line can be omitted, but every 7th replication interval will be a full copy versus
forever incremental copies enabled by the DR license.

pxctl credentials create --provider s3 --s3-access-key <AWS_ACCESS_KEY_ID> --s3-secret-key <AWS-
SECRET-ACCESS_KEY> --s3-region <region of source cluster> --s3-endpoint s3.amazonaws.com --s3-
storage-class STANDARD clusterPair_<destination_cluster_uuid>

 options:
 ip: "<IP of any Portworx node in DR Cluster>"

 port: "9001"
 token: "<cluster token from DR Cluster>"
 mode: DisasterRecovery2

apiVersion: stork.libopenstorage.org/v1alpha1
kind: SchedulePolicy

TECHNICAL WHITE PAPER

 22

Next, create a MigrationSchedule manifest that replicates the Jenkins namespace, where you have deployed Jenkins:

apiVersion: stork.libopenstorage.org/v1alpha1

kind: MigrationSchedule
metadata:
 name: jenkins-async-dr
 namespace: migrations
spec:
 template:

 spec:
 clusterPair: remotecluster
 includeResources: true
 includeVolumes: true
 startApplications: false
 namespaces:

 - jenkins
 adminClusterPair: remotecluster
 purgeDeletedResources: false
 schedulePolicyName: jenkins-dr-policy

Since you are configuring disaster recovery, take note that the options startApplications and purgeDeletedResources have

been set to false. Migrations and migration schedules can be used for disaster recovery replication like you are doing here. But

they can also be used for one-time application migrations between clusters or namespaces within a cluster by changing the

kind to Migrations and omitting schedulePolicyName. This type of migration begins once the manifest is applied.

For disaster recovery, apply the manifest as displayed above to the source cluster; replication will begin shortly after. The first

interval is a full copy of the selected namespaces. Every following replication interval uses incremental snapshots to minimize

the amount of data sent. Also, on AWS, Portworx uses an S3 bucket to hold the migration data during the replication to help

further reduce transport costs.

metadata:
 name: jenkins-dr-policy
 namespace: migrations
policy:

 interval:
 intervalMinutes: 15
 daily:
 time: "10:14PM"
 weekly:
 day: "Thursday"

 time: "10:13PM"
 monthly:
 date: 14
 time: "8:05PM"

TECHNICAL WHITE PAPER

 23

Each time the replication occurs, a migrations object is created in the migrations namespace. After 5-10 minutes, you can

verify the status of the replication by issuing the following commands:

kubectl get migrations -n migrations
kubectl describe migrations <selected migration> -n kube-system

The output will list all objects that are part of the DR migration. For brevity, we have removed the bulk of the output; however,

note that at the end of this block, "Stage: Final" has a status of successful.

Some output was removed in the interest of brevity
Name: jenkins-async-dr-interval-2021-06-09-200912
Namespace: migrations
Labels: <none>

Annotations: <none>
API Version: stork.libopenstorage.org/v1alpha1
Kind: Migration
Status:
 Finish Timestamp: 2021-06-09T20:10:51Z
 Resources:

 Group: core
 Kind: PersistentVolume
 Name: pvc-2f05d999-b391-46cc-a4a2-bdee199c98e9
 Namespace:
 Reason: Resource migrated successfully
 Version: v1

 Group: rbac.authorization.k8s.io
 Kind: Role
 Name: jenkins-casc-reload
 Namespace: jenkins
 Reason: Resource migrated successfully
 Status: Successful

 Kind: RoleBinding
 Name: jenkins-watch-configmaps
 Namespace: jenkins
 Reason: Resource migrated successfully
 Status: Successful
 Version: v1

 Stage: Final
 Status: Successful
 Volumes:
 Namespace: jenkins
 Persistent Volume Claim: jenkins
 Reason: Migration successful for volume

 Status: Successful
 Volume: pvc-2f05d999-b391-46cc-a4a2-bdee199c98e9
 Namespace: jenkins

TECHNICAL WHITE PAPER

 24

 Persistent Volume Claim: jenkins-plugin-dir
 Reason: Migration successful for volume
 Status: Successful
 Volume: pvc-9a0d9983-ffab-4d7e-b11b-07cffb59c574

 Namespace: jenkins
 Persistent Volume Claim: jenkins-plugins
 Reason: Migration successful for volume
 Status: Successful
 Volume: pvc-72e65c45-f916-4f83-9c9a-ead8f96f443f
 Namespace: jenkins

 Persistent Volume Claim: sc-config-volume
 Reason: Migration successful for volume
 Status: Successful
 Volume: pvc-e4777535-2513-4cdf-98c5-8a1e9a3cb869

Let's look at a few important details. In the migration manifest, you specified that all objects from the jenkins namespace be

replicated. This can be validated by looking at the output from querying the objects in the namespace on the target cluster.

Switching to that cluster, you can issue kubectl get all -n jenkins

Notice that the Jenkins StatefulSet controller has no instances running. Everything is now replicated to the DR cluster, but it

has not been started. Successive replications will keep these objects and the persistent volumes updated based on your

replication interval. Also, at any time, you can suspend the replication and scale up the StatefulSet controller to test the

viability of your DR site. See the Solution Testing and Validation section for more information.

Install and Configure PX-Backup

Installation

First, create a StorageClass object for the PX-Backup3 database and other components using the following manifest. Copy this

into an editor and save it as px-backup-sc.yaml and then applying it to your cluster.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:

3 Portworx PX-Backup is a separately licensed product. PX-Backup can be used with any CSI storage solution, including AWS's EBS CSI driver. Please consult with Portworx or AWS for more
details.

TECHNICAL WHITE PAPER

 25

 name: px-backup-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "2"

 io_profile: auto
allowVolumeExpansion: true

To install PX-Backup to your environment, open https://central.portworx.com and log in to your account. In the Portworx spec

generator, select PX-Backup, and then scroll to the bottom and click Next.

Then, on the Spec Details page, under Select your environment, choose Cloud. In the Storage Class Name field, enter “px-

backup-sc” from the manifest above that was applied to the cluster. If you are using OpenID Connect (OIDC), you can

configure the connection here, as well as if you have a custom registry with the PX-Backup images. Click Next to proceed.

https://central.portworx.com/

TECHNICAL WHITE PAPER

 26

On the next screen, you are provided with the Helm commands to install PX-Backup. Since you installed Helm before installing

Jenkins, you are ready to issue the commands.

1. First, copy the contents of "Step 1" and apply it to your production cluster: helm repo add portworx

http://charts.portworx.io/ && helm repo update

2. Now, copy the contents of the left box in "Step 2" and apply it to your production cluster. This will install PX-Backup in the

px-backup namespace. The namespace will be created in the process.

helm install px-backup portworx/px-backup --namespace px-backup --create-namespace --version 1.2.3 -
-set persistentStorage.enabled=true,persistentStorage.storageClassName="px-backup-sc"

You can monitor the progress of the installation by issuing watch kubectl get pods -n px-backup and wait until all pods

have reached a running state. Once everything is up and running, you can port-forward to the UI service and access the GUI.

The initial login is admin/admin. Change the password on the first login.

Configure PX-Backup

Once you are logged into the UI for PX-Backup, there are a couple of steps to take to be ready to start protecting your

environment.

1. First, add your cloud credentials to PX-Backup so it can access both your cluster resources and the S3 bucket used to
store the backup objects. To configure your credentials, click Settings in the upper-right corner and choose Cloud

Settings.

2. On the Cloud Settings page, in the top section, add the IAM Identity's AWS Cloud account credentials used with the

Disaster Recovery configuration. Click + Add in the upper-right corner to enter your credentials. Click Add at the bottom

once the page is complete.

TECHNICAL WHITE PAPER

 27

3. Next, click Backup Location on the Cloud Settings page. Click + Add in the lower-right corner.

4. Fill out the form. The fields with asterisks (*) are required.

a. Name: Provide a name for the backup location.

b. Select your cloud account from the drop-down list.

c. Provide a bucket name. If the bucket does not exist, it will be created with private access permissions.

d. Enter an encryption key if you want to encrypt your backups.

IMPORTANT: Be sure to save the encryption key for restores and backup validation tasks.

e. Enter the region that your production cluster is in.

f. The endpoint will be pre-populated.

g. Leave SSL enabled (do not select Disable SSL).

h. Select Standard for the storage class.

i. Click Add to finish.

If you want to keep monthly or extended retention backups in Standard-IA, create a second backup location to use with the

job definitions.

TECHNICAL WHITE PAPER

 28

Once complete, your cloud settings should resemble this:

Next, configure your backup schedules.

1. Return to the main screen and click Settings again, but select Schedule Policies. Then, on the Schedule Policies page,

click the plus (+) sign to add a new schedule policy.

2. Provide a policy name and select the type of policy from the Type drop-down list. Above is an example of a nightly backup.

You can configure a full GFS Backup schedule or a schedule that meets your organization's backup requirements. It might

be necessary to create multiple schedules to implement long-term retention for compliance or regulatory reasons.

TECHNICAL WHITE PAPER

 29

3. Next, configure any pre-backup and post-backup rules that you want to use. Example rules are available at
https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/, including rules for Jenkins. If you have

jobs that might be running, add the pre- and post-backup rules for Jenkins based on the reference found here:

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/jenkins/.

4. Finally, add your production cluster to PX-Backup to begin protecting your Jenkins environment. To do this, click Add

Cluster in the upper-right corner. On the resulting screen, fill in the information as described.

Once you complete this form with the information for your production cluster and click Submit, you will be returned to the PX-

Backup main page and your cluster will appear with a green dot next to its name.

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/
https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/jenkins/

TECHNICAL WHITE PAPER

 30

Configure Your First Backup Job

To configure your first backup job, click the name of the cluster and you will be taken to the job configuration screen.

Here, you can select the namespace(s) to back up from. Once a namespace has been selected (you can select all namespaces

if you want), then you can also filter by labels or resource types. However, for Jenkins, it is best to back up everything in the

namespace. So, select the Jenkins namespace.

Scroll down the page and you will see that all the various types of Kubernetes objects in the namespace are listed. The PVCs

and PVs are typically near the bottom. Be sure everything is selected, and then click Backup.

In the Backup window, you will provide a name, and then you can select the necessary options based on your desired backup

schedule. Once you have the desired backup settings, click Create to finish setting up the scheduled backups.

TECHNICAL WHITE PAPER

 31

Here is a sample configuration that includes a couple of labels added to the backup for later searches and filters:

Once you complete the schedule, it will start. Once complete, it will appear with a green icon on the All Backups page or on the

Backups page after clicking into the cluster from the main page.

TECHNICAL WHITE PAPER

 32

Here you can see an example of a schedule that runs every four hours, with the most recent backup on top.

In the event you want to test your backups, or restore your environment for whatever reason, simply click the three stacked

dots at the end of the line for the backup you want to use, and then select Restore.

Enter a name and select your production cluster. You can also add your DR cluster and restore to it as well. If you are simply

testing your backups, select Custom restore and restore to a different namespace. If you need to recover with the backup,

use the default restore option, but click the Replace existing resources checkbox at the bottom. Once you have the restore

configured, click Restore to start.

TECHNICAL WHITE PAPER

 33

The restore process can be monitored from the Restores tab. Once it finishes, you would find everything in place in the new

namespace, if you did a test restore. You can port forward to the Jenkins service and log in to verify that your restore was

successful.

Solution Testing and Validation

Functional Testing: Jenkins Controller HA Failover Test

The current state of Jenkins deployment is as follows:

Describe the Jenkins volume to see replica placement and status:

TECHNICAL WHITE PAPER

 34

To view Jenkins jobs:

Jenkins HA Failover

In the above output, Jenkins pods are running on host: IP-10.28-11-87.ec2.internal

To cordon the cordon node:

To delete a Jenkins pod to force failover:

Note that Jenkins is now running on host: IP-10-28-89-113.ec2.internal, and that failover time is based on pod start-up

configuration. Once the pod is available again, the build history is intact and the jobs are still populated and executing on the

set schedule as defined.

TECHNICAL WHITE PAPER

 35

Portworx Backup and Recovery UI

The PX-Backup UI looks like this:

Here is the Schedule Policies interface.

TECHNICAL WHITE PAPER

 36

Cloud accounts and backup location can be found in Cloud Settings:

The catalog of previous backups is displayed in All backups.

Backup and Restore Jenkins

To back up the app, back up the namespace. Note that the additional drop-down and label selector allows for more fine-

grained backups.

TECHNICAL WHITE PAPER

 37

Backup

To back up the application, select the Backup button and the dialog box below will appear. Provide a name, select a location,

and optionally select a schedule. You will also want to select the pre- and post-backup rules you created if needed. Then click

Create to start the backup.

Notice that all Kubernetes Objects listed will be part of the backup. The target location is in an S3 bucket.

Once the backup is started, it will appear in the backup catalog.

Clicking the three stacked dots to the right shows the status and configuration of the backup job. You can also select to

restore the backup from here.

TECHNICAL WHITE PAPER

 38

Once the backup completes, you can view the results and see what was protected.

Note that all Kubernetes objects are listed, including the Persistent Volume and Persistent Volume Claim objects. With this

successful backup, you now have multiple options for restoring the application.

If the cluster were to fail, or a mistake is made in applying manifests to the cluster that corrupts or breaks the Jenkins

deployment, you can restore it to the current instance. But you can also restore to a different namespace or a different

Portworx-enabled Kubernetes cluster.

In the following example, you will restore the Jenkins application to a second cluster located in a different region. The

production cluster is in AWS US-East-1. The second cluster is in AWS US-West-1.

TECHNICAL WHITE PAPER

 39

The US-West-1 Cluster - Portworx Status and Node List is below:

The current namespaces in US-West-1 Cluster:

To add the US-West-1 Cluster to PX-Backup:

PX-Backup can provide backup and recovery services to all connected clusters.

Restore Jenkins Backup

From the UI, click All Backups >>. This will present the backup catalog. Here, select the last backup and configure a restore to

the remote cluster located in the US-West-1 region.

TECHNICAL WHITE PAPER

 40

In the restore dialog box, provide a name for the restore job. In the destination cluster, both the source and remote clusters

are available. The remote cluster is selected and Custom Restore is selected to place the restored copy of Jenkins into a

different namespace. To proceed, ensure all items are selected and click the Restore button.

You can monitor the progress on the resulting page:

The backup was successfully restored to the cluster in the US-West-1 region, as seen below.

TECHNICAL WHITE PAPER

 41

The output for kubectl get all -n jenkins-restore looks like this:

The application is running in the namespace “jenkins-restored” and we can see that the cluster is in US-West-1.

Validate DR Replication Failover Preparedness

Change to the DR Cluster and verify the DR site is usable:

After suspending the DR migration schedule and scaling up the StatefulSet controller in the DR Cluster, we can then port-
forward to the Jenkins service and access the application running in the DR Cluster using kubectl port-forward -n

jenkins svc/jenkins 8080.

Next, open your browser and navigate to http://localhost:8080. Your credentials are the same as the production deployment.

Once logged in, you can verify that everything is in place and ready in case of a disaster recovery event.

http://localhost:8080/

TECHNICAL WHITE PAPER

 42

You can see that the jobs are there and ready to run. When you check the build history, you’ll see something like the

screenshot below:

TECHNICAL WHITE PAPER

 43

Not only is the job history there, but the Maven-Test has started on the DR Cluster.

Once done testing the DR site, scale the StatefulSet controller back to 0 and re-enable the migration schedule on the

Production cluster:

You can then verify that the DR replication has resumed:

TECHNICAL WHITE PAPER

 44

Conclusion

Portworx by Pure Storage is the industry-leading container storage solution. By dynamically providing persistent storage to

containers, Portworx enables your company to run your development operations at any scale. Portworx was specifically built

from the ground up for containers. Like AWS EKS, which allows you to adapt your compute resources as your needs change,

Portworx allows you to "right-size" your storage. No more guesswork or wasted capacity!

Portworx also enables HA across availability zones without the need to deploy multiple Jenkins controllers in an active-passive

configuration. Portworx enables you to realize a zero RPO and a recovery time objective (RTO) measured in seconds rather

than minutes or longer. By leveraging Portworx for your Jenkins deployments, you can start small and grow as your needs

change. Portworx offers unique capabilities, including automated provisioning, dynamic volume expansion, storage pool

expansions, data protection, and disaster recovery, and it works alongside EKS to ensure that your applications are always

performant, highly available, and protected with the same level of enterprise-class data services as more traditional

infrastructures.

Through testing of each component, we have shown that Portworx Enterprise can easily provide the enterprise-grade data

services needed to run reliable production systems in the AWS Cloud ecosystem at a large scale. Solving for speed, density,

and scale, Portworx not only enables efficient provisioning, cross-AZ high availability, and data that is as mobile as the

containers it fuels. Portworx also provides a complete disaster recovery and business continuity solution. Simply add the

Disaster Recovery option and enable Metro-DR for zero RPO, or Async-DR for longer distances with a low RPO of 10 minutes. If

your business just can’t be down, Portworx Enterprise paired with AWS Elastic Kubernetes Service are the tools for the job.

Complete the solution with PX Backup to provide Kubernetes-aware and application-consistent backups. PX-Backup enables

enterprises to maintain their data-protection SLAs in this new world of modern applications. Capable of backing up everything

from a single container app to distributed systems like Elastic, Cassandra, Kafka, and others, PX-Backup can even back up the

entire cluster state to protect your business against the worst of days. Portworx Backup completes a solution delivering a new

level of data protection, recoverability, and data mobility for containerized workloads.

Ultimately, AWS EKS and Portworx Enterprise provide a robust and reliable solution for Jenkins CI/CD pipelines. By ensuring

that the data is performant, protected, and always available, Portworx Kubernetes Data Services enhances operations in the

cloud to a level that no other currently available product can reach. With Portworx Enterprise and AWS EKS, your business can

now build software in the cloud without compromise.

TECHNICAL WHITE PAPER

 45

Appendix: Additional Testing

Volume Encryption: Cluster-Wide, Test 2.12

❯ kubectl -n kube-system create secret generic px-vol-encryption \
 --from-literal=cluster-wide-secret-key=Il0v3Portw0rX
secret/px-vol-encryption created

❯ pxctl secrets set-cluster-key --secret cluster-wide-secret-key
>> Running pxctl on ip-10-28-72-236.ec2.internal
Successfully set cluster secret key
❯ cat << EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1

metadata:
 name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 secure: "true"
 repl: "3"

EOF
storageclass.storage.k8s.io/px-secure-sc created
❯ cat << EOF | kubectl apply -f -
kind: PersistentVolumeClaim
apiVersion: v1
metadata:

 name: secure-pvc
spec:
 storageClassName: px-secure-sc
 accessModes:
 - ReadWriteOnce
 resources:

 requests:
 storage: 2Gi
EOF
persistentvolumeclaim/secure-pvc created
❯ pxctl v l

TECHNICAL WHITE PAPER

 46

Volume Encryption: Volume Granular Encryption, Test 2.13

❯ kubectl -n jenkins-secure create secret generic jenkins-encryption-key --from-literal=secure-
pvc=SuperSecur3Key
secret/ jenkins-encryption-key created
❯ cat << EOF | kubectl apply -f -
kind: StorageClass

apiVersion: storage.k8s.io/v1
metadata:
 name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 secure: "true"

 repl: "3"
EOF
storageclass.storage.k8s.io/px-secure-sc created
❯ cat << EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/v1

metadata:
 name: px-secure-rwx-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 sharedv4: "true"
 secure: "true"

 repl: "3"
EOF
storageclass.storage.k8s.io/px-secure-rwx-sc created
❯ cat << EOF | kubectl apply -f -
kind: PersistentVolumeClaim
apiVersion: v1

TECHNICAL WHITE PAPER

 47

Deploy Jenkins Using Encryption

metadata:
 name: jenkins-data-encrypted
 namespace: jenkins
 annotations:
 px/secret-name: jenkins-encryption-key
 px/secret-namespace: jenkins-encrypted

 px/secret-key: secure-pvc
spec:
 storageClassName: px-secure-rwx-sc
 accessModes:
 - ReadWriteOnce
 resources:

 requests:
 storage: 50Gi
EOF
persistentvolumeclaim/jenkins-data-encrypted created

❯ kubectl apply -f yamls/Jenkins-controller-encrypted.yaml
kubectl get po -n jenkins -w
statefulsets.apps/jenkins-encrypted created
service/jenkins-encrypted created
NAME READY STATUS RESTARTS AGE

jenkins-0 2/2 Running 0 32m
jenkins-encrypted-0 0/2 ContainerCreating 0 1s
jenkins-encrypted-0 2/2 Running 0 4s
❯ kubectl delete secret jenkins-encryption-key -n jenkins
secret "jenkins-encryption-key" deleted
❯ NODE=`kubectl get pods -l app=jenkins-encrypt -n jenkins -o jsonpath='{.items[0].spec.nodeName}'`

kubectl cordon $NODE
kubectl delete pod jenkins-encrypted-0 -n jenkins
kubectl uncordon $NODE
node/ip-10-28-67-235.ec2.internal cordoned
pod "jenkins-encrypted-0" deleted
node/ip-10-28-67-235.ec2.internal uncordoned

❯ kubectl describe po jenkins-encrypted-0 -n Jenkins
Name: jenkins-encrypted-0
Namespace: jenkins
Priority: 0

TECHNICAL WHITE PAPER

 48

 name=jenkins-encrypted
 statefulset.kubernetes.io/pod-name=jenkins-encrypted-0
Annotations: kubernetes.io/psp: eks.privileged
Status: Error

IP: 10.28.75.180
IPs:
 IP: 10.28.75.180
Controlled By: StatefulSet/jenkins-encrypted
Init Containers:
 init:

 Container ID: docker://828822c2251e78f69a28c1f1563b8449616fd02d1cc2647c0c8b974945b1ffac
 Image: jenkins/jenkins:2.293
 Image ID: docker-
pullable://jenkins/jenkins@sha256:7eafcc2583688b6dd6d8f614bbfe5a67c0d2f8b2ee0563364d5b2f310a74c021
 Port: <none>
 Host Port: <none>

 Command:
 sh
 /var/jenkins_config/apply_config.sh
 State: Terminated
 Reason: Error
 Exit Code: 1

 Started: Tue, 08 Jun 2021 09:54:36 -0400
 Finished: Tue, 08 Jun 2021 09:54:40 -0400
 Ready: True
 Restart Count: 0
 Limits:
 cpu: 3

 memory: 8Gi
 Requests:
 cpu: 500m
 memory: 512Mi
 Environment: <none>
 Mounts:

 /usr/share/jenkins/ref/plugins from plugins (rw)
 /var/jenkins_config from jenkins-config (rw)
 /var/jenkins_home from jenkins-home (rw)
 /var/jenkins_plugins from plugin-dir (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from jenkins-token-zxhfd (ro)
Containers:

 jenkins:
 Container ID: docker://35724d04ccea6a8b91aa15acbc3a861d708779ab73aea95dac4224df6ee1c055
 Image: jenkins/jenkins:2.293-jdk11
 Image ID: docker-
pullable://jenkins/jenkins@sha256:439516c825946e9252a0b65049a3bfc500df8d599a57be9bfce08213c837170a
 Ports: 8082/TCP, 50010/TCP

 Host Ports: 0/TCP, 0/TCP
 Args:

TECHNICAL WHITE PAPER

 49

 --httpPort=8080
 State: CrashLoopBackoff
 Started: Tue, 08 Jun 2021 09:54:51 -0400
 Ready: True

 Restart Count: 4
 Limits:
 cpu: 2
 memory: 4Gi
 Requests:
 cpu: 500m

 memory: 512Mi
 Liveness: http-get http://:8082/login delay=0s timeout=5s period=10s #success=1 #failure=5
 Readiness: http-get http://:8082/login delay=0s timeout=5s period=10s #success=1 #failure=3
 Startup: http-get http://:8082/login delay=0s timeout=5s period=10s #success=1 #failure=12
 Environment:
 POD_NAME: jenkins-encrypted-0 (v1:metadata.name)

 JAVA_OPTS: -Dcasc.reload.token=$(POD_NAME)
 JENKINS_OPTS:
 JENKINS_SLAVE_AGENT_PORT: 50010
 JENKINS_UC: https://updates.jenkins.io
 JENKINS_UC_DOWNLOAD: https://ftp-nyc.osuosl.org/pub/jenkins
 CASC_JENKINS_CONFIG: /var/jenkins_home/casc_configs

 Mounts:
 /run/secrets/chart-admin-password from admin-secret (ro,path="jenkins-admin-password")
 /run/secrets/chart-admin-username from admin-secret (ro,path="jenkins-admin-user")
 /usr/share/jenkins/ref/plugins/ from plugin-dir (rw)
 /var/jenkins_config from jenkins-config (ro)
 /var/jenkins_home from jenkins-home (rw)

 /var/jenkins_home/casc_configs from sc-config-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from jenkins-token-zxhfd (ro)
 config-reload:
 Container ID: docker://5e5c6c988e6c325123766d380ffa2ffa53d5db8fd2a6652b34179b0359575520
 Image: kiwigrid/k8s-sidecar:1.12.0
 Image ID: docker-pullable://kiwigrid/k8s-

sidecar@sha256:89739be9ff3894910b29fa505b8726372c8433a6b3786b8e769631d8146b4035
 Port: <none>
 Host Port: <none>
 State: Failed
 Started: Tue, 08 Jun 2021 09:54:54 -0400
 Ready: False

 Restart Count: 0
 Limits:
 cpu: 500m
 memory: 512Mi
 Requests:
 cpu: 50m

 memory: 256Mi
 Environment:

TECHNICAL WHITE PAPER

 50

 POD_NAME: jenkins-encrypted-0 (v1:metadata.name)
 LABEL: jenkins-config
 FOLDER: /var/jenkins_home/casc_configs
 NAMESPACE: jenkins

 REQ_URL: http://localhost:8082/reload-configuration-as-code/?casc-reload-
token=$(POD_NAME)
 REQ_METHOD: POST
 REQ_RETRY_CONNECT: 10
 Mounts:
 /var/jenkins_home from jenkins-home (rw)

 /var/jenkins_home/casc_configs from sc-config-volume (rw)
 /var/run/secrets/kubernetes.io/serviceaccount from jenkins-token-zxhfd (ro)
Conditions:
 Type Status
 Initialized False
 Ready False

 ContainersReady False
 PodScheduled True
Volumes:
 plugins:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: jenkins-plugins

 ReadOnly: false
 jenkins-config:
 Type: ConfigMap (a volume populated by a ConfigMap)
 Name: jenkins
 Optional: false
 plugin-dir:

 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: jenkins-plugin-dir
 ReadOnly: false
 jenkins-home:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: jenkins

 ReadOnly: false
 sc-config-volume:
 Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
 ClaimName: sc-config-volume
 ReadOnly: false
 admin-secret:

 Type: Secret (a volume populated by a Secret)
 SecretName: jenkins
 Optional: false
 jenkins-token-zxhfd:
 Type: Secret (a volume populated by a Secret)
 SecretName: jenkins-token-zxhfd

 Optional: false
QoS Class: Burstable

TECHNICAL WHITE PAPER

 51

PostgreSQL RWO

Tests: 2.01 through 2.03 Output

Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute op=Exists for 300s
 node.kubernetes.io/unreachable:NoExecute op=Exists for 300s
Events:

 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 34m stork Successfully assigned jenkins/jenkins-encrypted-0 to ip-10-
28-67-235.ec2.internal
 Warning FailedMount 34m kubelet MountVolume.SetUp failed for volume "default-token-czw4j" :
failed to sync secret cache: timed out waiting for the condition. – Could not mount volume after

Secret was deleted
❯ kubectl delete -f jenkins-encrypted.yaml
kubectl delete pvc jenkins-encrypted -n jenkins
statefulset.apps "jenkins-encrypted" deleted
persistentvolumeclaim "jenkins-encrypted" deleted

❯ kubectl create ns postgres
namespace/postgres created
❯ kubectl apply -f yamls/postgres-sc.yaml
storageclass.storage.k8s.io/px-postgres-sc created
❯ kubectl apply -f yamls/postgres-pvc.yaml

persistentvolumeclaim/postgres-data created
❯ kubectl get pvc -n postgres
NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
postgres-data Bound pvc-e27f59af-a275-476c-90f0-3e0d0c681d15 2Gi RWO px-
postgres-sc 13s

❯ kubectl label nodes --all node-role.kubernetes.io/worker=true
node/ip-10-28-0-91.ec2.internal labeled
node/ip-10-28-43-50.ec2.internal labeled
node/ip-10-28-60-118.ec2.internal labeled
node/ip-10-28-67-235.ec2.internal labeled
node/ip-10-28-72-236.ec2.internal labeled

node/ip-10-28-8-123.ec2.internal labeled
❯ # this command assumes your nodes are labled correctly
NODE=`kubectl get nodes -l node-role.kubernetes.io/worker=true -o
jsonpath='{.items[0].metadata.name}'`
❯ cat << EOF | kubectl apply -f -
apiVersion: portworx.io/v1beta2

kind: VolumePlacementStrategy

TECHNICAL WHITE PAPER

 52

spec:
 replicaAffinity:
 - matchExpressions:
 - key: kubernetes.io/hostname

 operator: In
 values:
 - "$NODE"
EOF
volumeplacementstrategy.portworx.io/node-specific created
❯ cat << EOF | kubectl apply -f -

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-node-specific-sc
 labels:
 app: postgres

provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "1"
 placement_strategy: "node-specific"
allowVolumeExpansion: true
EOF

storageclass.storage.k8s.io/px-node-specific-sc created
❯ cat << EOF | kubectl apply -f -
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: vps-test

spec:
 storageClassName: px-node-specific-sc
 accessModes:
 - ReadWriteOnce
 resources:
 requests:

 storage: 20Gi
EOF
persistentvolumeclaim/vps-test created
❯ # check that the PVC is bound before running the inspect command
kubectl get pvc vps-test
once it's bound you can inspect it

PVC=`kubectl get pvc vps-test --no-headers | awk '{print $3}'`
pxctl volume inspect $PVC
and confirm that the IP of the Node in the replica set matches the node's IP
kubectl get node $NODE -o wide
zsh: correct 'pxctl' to 'tpctl' [nyae]? n
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

vps-test Pending px-node-specific-sc 21s
zsh: command not found: pxctl

TECHNICAL WHITE PAPER

 53

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP
OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME
ip-10-28-0-91.ec2.internal Ready worker 28d v1.19.6-eks-49a6c0 10.28.0.91 3.90.241.207
Amazon Linux 2 5.4.110-54.182.amzn2.x86_64 docker://19.3.13

❯ kubectl apply -f yamls/postgres-app.yaml
deployment.apps/postgres created
service/postgres created
❯ kubectl get po -n postgres
NAME READY STATUS RESTARTS AGE
postgres-ddf7d7dfc-dkgww 1/1 Running 0 15s

❯ POSTGRES_POD=`kubectl get po -n postgres -l app=postgres -o jsonpath='{.items[0].metadata.name}'`
kubectl exec -it -n postgres $POSTGRES_POD -- psql -c "create database pxdemo;"
CREATE DATABASE
❯ kubectl exec -it -n postgres $POSTGRES_POD -- pgbench -i -s 50 pxdemo
NOTICE: table "pgbench_history" does not exist, skipping
NOTICE: table "pgbench_tellers" does not exist, skipping

NOTICE: table "pgbench_accounts" does not exist, skipping
NOTICE: table "pgbench_branches" does not exist, skipping
creating tables...
100000 of 5000000 tuples (2%) done (elapsed 0.08 s, remaining 3.84 s)
200000 of 5000000 tuples (4%) done (elapsed 0.17 s, remaining 4.03 s)
300000 of 5000000 tuples (6%) done (elapsed 0.28 s, remaining 4.37 s)

400000 of 5000000 tuples (8%) done (elapsed 0.35 s, remaining 4.06 s)
500000 of 5000000 tuples (10%) done (elapsed 0.43 s, remaining 3.89 s)
600000 of 5000000 tuples (12%) done (elapsed 0.50 s, remaining 3.65 s)
700000 of 5000000 tuples (14%) done (elapsed 0.57 s, remaining 3.50 s)
800000 of 5000000 tuples (16%) done (elapsed 0.64 s, remaining 3.37 s)
900000 of 5000000 tuples (18%) done (elapsed 0.73 s, remaining 3.32 s)

1000000 of 5000000 tuples (20%) done (elapsed 0.82 s, remaining 3.28 s)
1100000 of 5000000 tuples (22%) done (elapsed 0.90 s, remaining 3.18 s)
1200000 of 5000000 tuples (24%) done (elapsed 0.97 s, remaining 3.08 s)
1300000 of 5000000 tuples (26%) done (elapsed 1.06 s, remaining 3.02 s)
1400000 of 5000000 tuples (28%) done (elapsed 1.15 s, remaining 2.96 s)
1500000 of 5000000 tuples (30%) done (elapsed 1.25 s, remaining 2.92 s)

1600000 of 5000000 tuples (32%) done (elapsed 1.36 s, remaining 2.90 s)
1700000 of 5000000 tuples (34%) done (elapsed 1.45 s, remaining 2.82 s)
1800000 of 5000000 tuples (36%) done (elapsed 1.54 s, remaining 2.74 s)
1900000 of 5000000 tuples (38%) done (elapsed 1.63 s, remaining 2.66 s)
2000000 of 5000000 tuples (40%) done (elapsed 1.70 s, remaining 2.55 s)
2100000 of 5000000 tuples (42%) done (elapsed 1.77 s, remaining 2.45 s)

2200000 of 5000000 tuples (44%) done (elapsed 1.85 s, remaining 2.36 s)
2300000 of 5000000 tuples (46%) done (elapsed 1.92 s, remaining 2.26 s)
2400000 of 5000000 tuples (48%) done (elapsed 2.00 s, remaining 2.17 s)
2500000 of 5000000 tuples (50%) done (elapsed 2.08 s, remaining 2.08 s)
2600000 of 5000000 tuples (52%) done (elapsed 2.14 s, remaining 1.98 s)
2700000 of 5000000 tuples (54%) done (elapsed 2.22 s, remaining 1.89 s)

2800000 of 5000000 tuples (56%) done (elapsed 2.29 s, remaining 1.80 s)
2900000 of 5000000 tuples (58%) done (elapsed 2.36 s, remaining 1.71 s)

TECHNICAL WHITE PAPER

 54

Failover Testing: 2.04, Postgres

3000000 of 5000000 tuples (60%) done (elapsed 2.43 s, remaining 1.62 s)
3100000 of 5000000 tuples (62%) done (elapsed 2.51 s, remaining 1.54 s)
3200000 of 5000000 tuples (64%) done (elapsed 2.60 s, remaining 1.46 s)
3300000 of 5000000 tuples (66%) done (elapsed 2.69 s, remaining 1.38 s)

3400000 of 5000000 tuples (68%) done (elapsed 2.77 s, remaining 1.31 s)
3500000 of 5000000 tuples (70%) done (elapsed 2.87 s, remaining 1.23 s)
3600000 of 5000000 tuples (72%) done (elapsed 2.96 s, remaining 1.15 s)
3700000 of 5000000 tuples (74%) done (elapsed 3.05 s, remaining 1.07 s)
3800000 of 5000000 tuples (76%) done (elapsed 3.14 s, remaining 0.99 s)
3900000 of 5000000 tuples (78%) done (elapsed 3.22 s, remaining 0.91 s)

4000000 of 5000000 tuples (80%) done (elapsed 3.35 s, remaining 0.84 s)
4100000 of 5000000 tuples (82%) done (elapsed 3.45 s, remaining 0.76 s)
4200000 of 5000000 tuples (84%) done (elapsed 3.54 s, remaining 0.67 s)
4300000 of 5000000 tuples (86%) done (elapsed 3.65 s, remaining 0.59 s)
4400000 of 5000000 tuples (88%) done (elapsed 3.72 s, remaining 0.51 s)
4500000 of 5000000 tuples (90%) done (elapsed 3.80 s, remaining 0.42 s)

4600000 of 5000000 tuples (92%) done (elapsed 3.87 s, remaining 0.34 s)
4700000 of 5000000 tuples (94%) done (elapsed 3.96 s, remaining 0.25 s)
4800000 of 5000000 tuples (96%) done (elapsed 4.05 s, remaining 0.17 s)
4900000 of 5000000 tuples (98%) done (elapsed 4.13 s, remaining 0.08 s)
5000000 of 5000000 tuples (100%) done (elapsed 4.21 s, remaining 0.00 s)
vacuum...

set primary keys...
done.
❯ kubectl exec -it -n postgres $POSTGRES_POD -- df -m | grep postgres
/dev/pxd/pxd559963210498322444 1952 805 1030 44% /var/lib/postgresql/data
❯ kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c "select count(*) from
pgbench_accounts"

 count

 5000000
(1 row)

❯ NODE=`kubectl get pods -l app=postgres -n postgres -o jsonpath='{.items[0].spec.nodeName}'`

kubectl cordon $NODE
kubectl delete pod $POSTGRES_POD -n postgres
node/ip-10-28-8-123.ec2.internal cordoned
pod "postgres-ddf7d7dfc-dkgww" deleted
❯ kubectl get pod -o wide -n postgres
NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES
postgres-ddf7d7dfc-xgzd8 1/1 Running 0 23s 10.28.65.138 ip-10-28-67-
235.ec2.internal <none> <none>
❯ NODE=`kubectl get pods -l app=postgres -n postgres -o jsonpath='{.items[0].spec.nodeName}'`

TECHNICAL WHITE PAPER

 55

Read Write Many: Nginix Deployment, 2.05 and 2.06

kubectl cordon $NODE
kubectl delete pod $POSTGRES_POD -n postgres
node/ip-10-28-8-123.ec2.internal cordoned
pod "postgres-ddf7d7dfc-dkgww" deleted

❯ kubectl get pod -o wide -n postgres
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
postgres-ddf7d7dfc-xgzd8 1/1 Running 0 23s 10.28.65.138 ip-10-28-67-
235.ec2.internal <none> <none>
❯ POSTGRES_POD=`kubectl get po -n postgres -l app=postgres -o jsonpath='{.items[0].metadata.name}'`

kubectl exec -it -n postgres $POSTGRES_POD -- df -m | grep postgres
/dev/pxd/pxd559963210498322444 1952 821 1014 45% /var/lib/postgresql/data
❯ kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c "select count(*) from
pgbench_accounts"
 count

 5000000
(1 row)
❯ kubectl uncordon $NODE
node/ip-10-28-8-123.ec2.internal uncordoned

❯ kubectl apply -f yamls/nginx-sc.yaml
storageclass.storage.k8s.io/px-shared-sc created
❯ kubectl create ns nginx
kubectl apply -f yamls/nginx-pvc.yaml
namespace/nginx created
persistentvolumeclaim/nginx-pvc created

❯ kubectl apply -f yamls/nginx-app.yaml
deployment.apps/nginx created
service/nginx-svc created
❯ kubectl get po -n nginx
NAME READY STATUS RESTARTS AGE
nginx-744b4745dc-w6pgz 1/1 Running 0 13s

❯ kubectl get svc -n nginx
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE

nginx-svc LoadBalancer 172.20.36.161 ac6065bf92048455ba37f6e9cd1b316b-1972197306.us-east-

1.elb.amazonaws.com 80:30096/TCP 26s

❯ cat << EOF | cat >> index.html

<html>

<h1>Hello World<\h1>

</html>

TECHNICAL WHITE PAPER

 56

Volume Snapshot: Test 2.14

PostgreSQL used for testing:

EOF
POD=`kubectl get pods -n nginx --no-headers | head -n 1 | awk '{print $1}'`

kubectl cp -n nginx index.html $POD:/usr/share/nginx/html/index.html
❯ kubectl scale deploy nginx -n nginx --replicas=3
deployment.apps/nginx scaled
❯ kubectl get po -n nginx -owide
NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

nginx-744b4745dc-8wg7w 1/1 Running 0 17s 10.28.37.164 ip-10-28-43-
50.ec2.internal <none> <none>
nginx-744b4745dc-g2c6w 1/1 Running 0 17s 10.28.79.33 ip-10-28-72-
236.ec2.internal <none> <none>
nginx-744b4745dc-w6pgz 1/1 Running 0 2m4s 10.28.20.149 ip-10-28-8-
123.ec2.internal <none> <none>

❯ cat << EOF | kubectl apply -f -
apiVersion: volumesnapshot.external-storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
 name: px-postgres-snapshot

 namespace: postgres
spec:
 persistentVolumeClaimName: postgres-data
EOF
volumesnapshot.volumesnapshot.external-storage.k8s.io/px-postgres-snapshot created
❯ kubectl describe volumesnapshot px-postgres-snapshot -n postgres

Name: px-postgres-snapshot
Namespace: postgres
Labels: SnapshotMetadata-PVName=pvc-e27f59af-a275-476c-90f0-3e0d0c681d15
 SnapshotMetadata-Timestamp=1622737975553645452
Annotations: <none>
API Version: volumesnapshot.external-storage.k8s.io/v1

Kind: VolumeSnapshot
Metadata:
 Creation Timestamp: 2021-06-03T16:32:55Z
 Generation: 3
 Managed Fields:
 API Version: volumesnapshot.external-storage.k8s.io/v1

 Time: 2021-06-03T16:32:55Z
 API Version: volumesnapshot.external-storage.k8s.io/v1
 Manager: kubectl-client-side-apply

TECHNICAL WHITE PAPER

 57

Volume Snapshot Restore: Test 2.15

To test the snapshot restore, drop the px-demo database and show you can recover it:

 Operation: Update
 Time: 2021-06-03T16:32:55Z
 Resource Version: 16829061
 Self Link: /apis/volumesnapshot.external-

storage.k8s.io/v1/namespaces/postgres/volumesnapshots/px-postgres-snapshot
 UID: c3dbd16b-3bfe-422e-9aa5-482f83287606
Spec:
 Persistent Volume Claim Name: postgres-data
 Snapshot Data Name: k8s-volume-snapshot-9790aa14-bf7e-410a-8306-c1915723ad99
Status:

 Conditions:
 Last Transition Time: 2021-06-03T16:32:56Z
 Message: Snapshot created successfully and it is ready
 Reason:
 Status: True
 Type: Ready

 Creation Timestamp: <nil>
Events: <none>

❯ POSTGRES_POD=`kubectl get po -n postgres -l app=postgres -o jsonpath='{.items[0].metadata.name}'`

kubectl exec -it -n postgres $POSTGRES_POD -- psql -c "drop database pxdemo;"
DROP DATABASE
❯ kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c "select count(*) from
pgbench_accounts"
psql: FATAL: database "pxdemo" does not exist
command terminated with exit code 2

❯ cat << EOF | kubectl apply -f -
apiVersion: stork.libopenstorage.org/v1alpha1
kind: VolumeSnapshotRestore
metadata:
 name: postgres-snap-restore
 namespace: postgres

spec:
 sourceName: px-postgres-snapshot
 sourceNamespace: postgres
EOF
kubectl get po -n postgres -w
volumesnapshotrestore.stork.libopenstorage.org/postgres-snap-restore created

TECHNICAL WHITE PAPER

 58

Volume Resize: Automate with Autopilot, Test 2.15

❯ kubectl get po -n monitor -lapp=prometheus
kubectl get svc -n monitor prometheus
kubectl describe cm -n kube-system autopilot-config

NAME READY STATUS RESTARTS AGE
prometheus-prometheus-kube-prometheus-prometheus-0 2/2 Running 1 28d
Error from server (NotFound): services "prometheus" not found
Name: autopilot-config
Namespace: kube-system
Labels: <none>

Annotations: <none>
Data
====
config.yaml:

providers:

- name: default
 type: prometheus
 params: url=http://prometheus-kube-prometheus-prometheus.monitor.svc:9090
Events: <none>
❯ cat << EOF | kubectl apply -f -
apiVersion: autopilot.libopenstorage.org/v1alpha1

kind: AutopilotRule
metadata:
 name: volume-resize
 namespace: kube-system
spec:
 ##### selector filters the objects affected by this rule given labels

 selector:
 matchLabels:

NAME READY STATUS RESTARTS AGE
postgres-ddf7d7dfc-j28cd 0/1 Pending 0 1s
postgres-ddf7d7dfc-j28cd 0/1 Terminating 0 14s
postgres-ddf7d7dfc-j28cd 0/1 Terminating 0 14s
postgres-ddf7d7dfc-qlxd5 0/1 Pending 0 0s

postgres-ddf7d7dfc-qlxd5 0/1 Pending 0 0s
postgres-ddf7d7dfc-qlxd5 0/1 Pending 0 10s
postgres-ddf7d7dfc-qlxd5 0/1 ContainerCreating 0 10s
postgres-ddf7d7dfc-qlxd5 1/1 Running 0 11s
^C%
❯ POSTGRES_POD=`kubectl get po -n postgres -l app=postgres -o jsonpath='{.items[0].metadata.name}'`

kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c "select count(*) from pgbench_accounts"
 count

 5000000
(1 row)

TECHNICAL WHITE PAPER

 59

 app: postgres
 ##### conditions are the symptoms to evaluate. All conditions are AND'ed
 conditions:
 # volume usage should be less than 50%

 expressions:
 - key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)"
 operator: Gt
 values:
 - "50"
 ##### action to perform when condition is true

 actions:
 - name: openstorage.io.action.volume/resize
 params:
 # resize volume by scalepercentage of current size
 scalepercentage: "100"
 # volume capacity should not exceed 400GiB

 maxsize: "100Gi"
EOF
autopilotrule.autopilot.libopenstorage.org/volume-resize created
❯ kubectl get events --field-selector involvedObject.kind=AutopilotRule,involvedObject.name=volume-
resize --all-namespaces --sort-by .lastTimestamp
NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE

default 1s Normal Transition autopilotrule/volume-resize rule: volume-resize:pvc-
e27f59af-a275-476c-90f0-3e0d0c681d15 transition from Initializing => Normal

Scale Up: Adding Storage Using Autopilot

Starting Capacity = 750GB

❯ cat << EOF | kubectl apply -f -
apiVersion: autopilot.libopenstorage.org/v1alpha1

kind: AutopilotRule
metadata:
 name: pool-expand
spec:
 enforcement: required
 ##### conditions are the symptoms to evaluate. All conditions are AND'ed

 conditions:
 expressions:
 # pool available capacity less than 90%
 - key: "100 * (px_pool_stats_used_bytes/ px_pool_stats_total_bytes)"
 operator: Gt
 values:

 - "10"
 # pool total capacity should not exceed 2TB

TECHNICAL WHITE PAPER

 60

 - key: "px_pool_stats_total_bytes/(1024*1024*1024)"
 operator: Lt
 values:
 - "2000"

 ##### action to perform when condition is true
 actions:
 - name: "openstorage.io.action.storagepool/expand"
 params:
 # resize pool by scalepercentage of current size
 scalepercentage: "50"

 scaletype: "auto"
EOF
❯ pxctl cluster provision-status
>> Running pxctl on ip-10-28-8-123.ec2.internal
NODE NODE STATUS POOL
 POOL STATUS IO_PRIORITY SIZEAVAILABLE USED PROVISIONED ZONE REGION

 RACK
f7dfb0f8-322c-45fd-aebb-d3cc0322c398 Up 0 (c4c6dfcb-5069-4c1e-a5f7-8b8ec7c58a70)
 Online HIGH 247 GiB 222 GiB 25 GiB 665 GiB us-east-1b
 us-east-1 default
185717ed-734f-464b-af38-0fa9288350cd Up 0 (dc0a35ed-c6ec-469c-a474-64bc4e38d65f)
 Online HIGH 247 GiB 226 GiB 21 GiB 648 GiB us-east-1a

 us-east-1 default
c447d117-2ab1-41ec-9b6f-03782334c804 Up 0 (c986f840-73a4-4b3e-9117-0413dfb8b09f)
 Online HIGH 247 GiB 223 GiB 24 GiB 699 GiB us-east-1c
 us-east-1 default

Add Storage Node: Test 3.0.2

Status: PX is operational
License: PX-Enterprise extended eval (expires in 59 days)
Node ID: 79bb6bbe-440d-4ac1-9ede-096181bba6ce
 IP: 10.28.28.73
 Local Storage Pool: 1 pool
 POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION

 0 HIGH raid0 247 GiB 10 GiB Online us-east-1a us-east-1
 Local Storage Devices: 1 device

TECHNICAL WHITE PAPER

 61

 Device Path Media Type Size Last-Scan
 0:1 /dev/nvme1n1p2 STORAGE_MEDIUM_NVME 247 GiB 03 Jun 21 18:08 UTC
 total - 247 GiB
 Cache Devices:
 * No cache devices

 Journal Device:
 1 /dev/nvme1n1p1 STORAGE_MEDIUM_NVME
Cluster Summary
 Cluster ID: px-jenkins-prod
 Cluster UUID: eb9e5c27-dde2-4c08-8577-4b92c97e0e26
 Scheduler: kubernetes

 Nodes: 4 node(s) with storage (4 online), 2 node(s) without storage (2 online)
 IP ID SchedulerNodeName Auth
 StorageNode Used Capacity Status StorageStatus Version Kernel
 OS
 10.28.60.118 f7dfb0f8-322c-45fd-aebb-d3cc0322c398 ip-10-28-60-118.ec2.internal
 Disabled Yes 25 GiB 247 GiB Online Up 2.7.1.0-

8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.67.235 c447d117-2ab1-41ec-9b6f-03782334c804 ip-10-28-67-235.ec2.internal
 Disabled Yes 24 GiB 247 GiB Online Up 2.7.1.0-
8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.28.73 79bb6bbe-440d-4ac1-9ede-096181bba6ce ip-10-28-28-73.ec2.internal
 Disabled Yes 10 GiB 247 GiB Online Up (This node) 2.7.1.0-

8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.8.123 185717ed-734f-464b-af38-0fa9288350cd ip-10-28-8-123.ec2.internal
 Disabled Yes 21 GiB 247 GiB Online Up 2.7.1.0-
8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.72.236 9937ed71-674a-421d-8226-0ae361ba5ebc ip-10-28-72-236.ec2.internal
 Disabled No 0 B 0 BOnline No Storage 2.7.1.0-8a9e965

 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.43.50 2931ea9b-9ade-4c82-8dfd-5dfcc84d4b0c ip-10-28-43-50.ec2.internal
 Disabled No 0 B 0 BOnline No Storage 2.7.1.0-8a9e965
 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
Global Storage Pool
 Total Used : 81 GiB

 Total Capacity : 988 GiB
Upgrade – deploy new version of Portworx – Test 3.03
● STC=$(kubectl get stc -n portworx | awk '{if(NR>1)print $1}')
● kubectl patch stc $STC -n portworx --type json --patch '[{"op": "replace", "path":
"/spec/image", "value":"portworx/oci-monitor:2.7.1"}]'
Events:

 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Pulling 15m kubelet Pulling image "portworx/oci-monitor:2.7.1"
 Normal Pulled 15m kubelet Successfully pulled image "portworx/oci-
monitor:2.7.1" in 4.492196242s
 Normal Created 15m kubelet Created container portworx

 Normal Started 15m kubelet Started container Portworx

TECHNICAL WHITE PAPER

 62

Storage Rebalance: Automated by Autopilot

This is not shown due to the small amount of data in the cluster.

OS Patch: Upgrade OS in Rolling Fashion, Test 3.06

Current state:

PXCTL Status:

Status: PX is operational
License: PX-Enterprise extended eval (expires in 59 days)
Node ID: f7dfb0f8-322c-45fd-aebb-d3cc0322c398
 IP: 10.28.60.118

 Local Storage Pool: 1 pool
 POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION
 0 HIGH raid0 247 GiB 25 GiB Online us-east-1b us-east-1
 Local Storage Devices: 1 device
 Device Path Media Type Size Last-Scan
 0:1 /dev/nvme1n1p2 STORAGE_MEDIUM_NVME 247 GiB 03 Jun 21 18:11 UTC

 total - 247 GiB
 Cache Devices:
 * No cache devices
 Kvdb Device:

TECHNICAL WHITE PAPER

 63

 Device Path Size
 /dev/nvme2n1 150 GiB
 * Internal kvdb on this node is using this dedicated kvdb device to store its data.
 Journal Device:

 1 /dev/nvme1n1p1 STORAGE_MEDIUM_NVME
Cluster Summary
 Cluster ID: px-jenkins-prod
 Cluster UUID: eb9e5c27-dde2-4c08-8577-4b92c97e0e26
 Scheduler: kubernetes
 Nodes: 4 node(s) with storage (4 online), 2 node(s) without storage (2 online)

 IP ID SchedulerNodeName Auth
 StorageNode Used Capacity Status StorageStatus Version Kernel
 OS
 10.28.60.118 f7dfb0f8-322c-45fd-aebb-d3cc0322c398 ip-10-28-60-118.ec2.internal
 Disabled Yes 25 GiB 247 GiB Online Up (This node) 2.7.1.0-
8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2

 10.28.67.235 c447d117-2ab1-41ec-9b6f-03782334c804 ip-10-28-67-235.ec2.internal
 Disabled Yes 24 GiB 247 GiB Online Up 2.7.1.0-
8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.28.73 79bb6bbe-440d-4ac1-9ede-096181bba6ce ip-10-28-28-73.ec2.internal
 Disabled Yes 10 GiB 247 GiB Online Up 2.7.1.0-
8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2

 10.28.8.123 185717ed-734f-464b-af38-0fa9288350cd ip-10-28-8-123.ec2.internal
 Disabled Yes 22 GiB 247 GiB Online Up 2.7.1.0-
8a9e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
 10.28.72.236 9937ed71-674a-421d-8226-0ae361ba5ebc ip-10-28-72-236.ec2.internal
 Disabled No 0 B 0 BOnline No Storage 2.7.1.0-8a9e965
 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2

 10.28.43.50 2931ea9b-9ade-4c82-8dfd-5dfcc84d4b0c ip-10-28-43-50.ec2.internal
 Disabled No 0 B 0 BOnline No Storage 2.7.1.0-8a9e965
 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
Global Storage Pool
 Total Used : 81 GiB
 Total Capacity : 988 GiB

TECHNICAL WHITE PAPER

 64

Upgrading Kubernetes via Web Console (Including AMI image to match versions):

Portworx Cluster status after update:

TECHNICAL WHITE PAPER

 65

Resiliency Testing:

Node Reboot:

This was difficult to capture as the node went offline and came back online without interrupting operations outside of

Userspace (non-daemonset); pods were rescheduled within seconds on a different node.

Node Shutdown:

AWS Auto-scaling replaced the node based on my definitions and the node was resynced and back online:

Disk Failure: (simulation)

TECHNICAL WHITE PAPER

 66

Node IP-10-28-82-219 placed into maintenance mode to simulate a disk failure:

Note the PostgreSQL pod was not restarted and is still running on the same node, but using the storage replica on another

node. Note also that the database is still available.

Bringing Portworx on the node back online resynchronizes any changes and marks node available:

TECHNICAL WHITE PAPER

purestorage.com 800.379.PURE

PS2133-01 09/2021 i

©2021 Pure Storage, the Pure P Logo, and the marks on the Pure Trademark List at https://www.purestorage.com/legal/productenduserinfo.html are trademarks of
Pure Storage, Inc. Other names are trademarks of their respective owners. Use of Pure Storage Products and Programs are covered by End User Agreements, IP,
and other terms, available at: https://www.purestorage.com/legal/productenduserinfo.html and https://www.purestorage.com/patents

The Pure Storage products and programs described in this documentation are distributed under a license agreement restricting the use, copying, distribution, and
decompilation/reverse engineering of the products. No part of this documentation may be reproduced in any form by any means without prior written authorization
from Pure Storage, Inc. and its licensors, if any. Pure Storage may make improvements and/or changes in the Pure Storage products and/or the programs described
in this documentation at any time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO
CHANGE WITHOUT NOTICE.

Pure Storage, Inc.
650 Castro Street, #400
Mountain View, CA 94041

Note that during this operation the database was able to respond to queries and was not rescheduled to another node:

http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
https://www.youtube.com/user/purestorage
http://purestorage.com/
tel:8003797873
https://twitter.com/PureStorage
http://purestorage.com/
tel:8003797873
https://www.linkedin.com/company/pure-storage/
http://purestorage.com/
tel:8003797873
https://www.facebook.com/PureStorage/
http://purestorage.com/
tel:8003797873
mailto:info@purestorage.com
http://purestorage.com/
tel:8003797873
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents

	About Jenkins
	Introduction
	Reference Architecture Diagram
	Prerequisites
	AWS EC2 Instance Sizing
	Utilities

	Configuring AWS EKS and Portworx
	Installing and Configuring Portworx on Amazon EKS
	Install the Portworx Operator

	Prepare Cluster for Installing Jenkins
	Controller StorageClass
	Agent StorageClass
	AutoPilot Rules (Optional)

	Deploy Jenkins to Your Portworx-enabled EKS Cluster
	Deploy and Configure a Disaster Recovery Site
	Prepare Your AWS Cloud for Disaster Recovery
	Create a Cluster Pair and Admin Namespace

	Install and Configure PX-Backup
	Installation
	Configure PX-Backup

	Configure Your First Backup Job
	Solution Testing and Validation
	Functional Testing: Jenkins Controller HA Failover Test
	Jenkins HA Failover
	Portworx Backup and Recovery UI
	Backup and Restore Jenkins
	Validate DR Replication Failover Preparedness

	Conclusion
	Appendix: Additional Testing
	Volume Encryption: Cluster-Wide, Test 2.12
	Volume Encryption: Volume Granular Encryption, Test 2.13
	Deploy Jenkins Using Encryption
	PostgreSQL RWO
	Failover Testing: 2.04, Postgres
	Read Write Many: Nginix Deployment, 2.05 and 2.06
	Volume Snapshot: Test 2.14
	Volume Snapshot Restore: Test 2.15
	Volume Resize: Automate with Autopilot, Test 2.15
	Scale Up: Adding Storage Using Autopilot
	Add Storage Node: Test 3.0.2
	Storage Rebalance: Automated by Autopilot
	OS Patch: Upgrade OS in Rolling Fashion, Test 3.06
	Resiliency Testing:

