EEEEEEEEEEEEEEEEEEEEE

Highly Available
Jenkins at Scale
with Portworx
Enterprise and

AWS EKS

enterprise-grade CI/CD platform in the cloud.

TECHNICAL WHITE PAPER

Contents

ADOUL JENKINS «..cciisississes 3
13T (0T [T T0) N 3
Reference ArchiteCture DIagramccoiiiiuuuiiiiiiiiiiimuiiiiiiniiiienuiieeeiitesassesssssstsssnns 4
PrErEOUISITES. . .cuuuiiiineiiiiineiiiiineiieiienieiieneietieneiettsnssostsssnssssssassssssssssssssnsssssanssssssnssssssnnsssssnnnes 4

AWS EC2 INSTANCE SIZING ettt ettt ettt ettt et st et e st et es e e e s es a4 es et esesea e e s ehea e es et ea e s et es e s e b en et eb e st s eaen et esese s eaeseneaas 4

UBIIIES ettt H et EeE e e Eeh R h e h e h ettt h ettt 4
Configuring AWS EKS and POFTWOIXccccvuuuuiiiiiiiiiiimuiiiiiiniiiitiuiiisiiiiesssssiisssitesssssesses 5
Installing and Configuring Portworx on Amazon EKS............ccveiiiiiiiiinmnniiiiinnninnenneniisnnnne 9

Install the Portworx Operator

Prepare Cluster for INStalling JENKINSuuueiiiiiiiiiiiiiiiiiiiiiiiiicninirenieissentiessassssssssstsssssesssssssssessssssssssssssssssssssssssssees 14

CONTIOIET STOTAGECIASS -.ueeettiiieteieetet ettt ettt ettt sttt st es et s et e st ses et e s e s ea e s e s e a e s esem e s e s em e s e st a e s e s ea e s ehes e e s esese et eseseanebeneasenene s 15

Agent StorageClass

AUTOPIIOT RUIES (OPTIONAI) eiviitiee ettt ettt ettt et e s et e s st et e st e s e st e s e s st es e st eses st e s e s sssesessssesessssesesnsseseanes 16
RecOMMENAEA AULTOPIIOT RUIE ...ttt ettt ettt b et st et e m s e s e a e b et en e s e s e st e e s e st b e b ese et eses e e eaeseanenas 17
Deploy Jenkins to Your Portworx-enabled EKS CIUSTErccccccituuieiinneiciinneiciienesscienesensanssssanens 17
Deploy and Configure a Disaster Recovery Site............ccccoiirrrmuiiiiiiiiiinnnniisinninneeneeenees 18
Prepare Your AWS Cloud fOr DISASTEN RECOVETYouiivoeieieeeieeeeeeeeeetee ettt ettt ettt s et et s s s s st e asean 19

Create a Cluster Pair and Admin Namespace

Install and CoNfigure PX-BacCKUPccciitrruuuiiiiiiiiiimmuiiiiiniiieemusiiiisiiiesmsssassssssss 24

NS TAIIATION <.ttt ettt ettt ettt et et ettt ettt ettt ettt ettt et e e e

Configure PX-Backup

Configure Your First BaCKUP JODuuuuiiiiiiiiiiiiiiitiiiiiiiiieiiisissses 30
Solution Testing and Validationccuuuiiiiiiiiiimiiiiiiiiiiiiiiiniiiniriiisenntrcsasessssessseesssssesssssstesssssssssssssssssssssssssssssens 33
Functional Testing: Jenkins CoNtroller HA FallOVET TEST ...ttt ee 33
JENKINS HA FAIOVET ..ottt ettt ettt e et s 4t s et et e s e et e s £ e e e e st e e b e st etes et et e s et e s esea e et es et eses et et eseneeteseneaeesens 34
Portworx BaCkup @nNd RECOVETY Ul ..ottt ettt ettt st se ettt s e b et ss s e s et ess e s et et ese et e s essese s essensesesens 35
BaACKUP @NA RESTOME JENKINSivieiietiieiett ettt ettt ettt ettt ettt ettt et b et s et e s e st ese e s et e st e s e s e s esses e s e s b esses e s essese et et essese s essessesessens 36
Validate DR Replication FailoVer PrePar@aNESScoiuiiiiieiiieieteeteeeet ettt ettt ettt ettt et ea ettt e st esees et s e s e s e esses e s esseneesensan 41
CONCIUSIONcciiutiiiiiiiiiiiiitiiieetiirrettieeettreeeaaessssessssesssesssnnsssssss a4
Appendix: AdditioNal TESHINGeiiiiiiiiiiiiiiiiiiiiiiiiinnirrrrsee e reeaassssse st s essssessssessstssssssssssssstessssssssssssssssssssssssssssases 45

TECHNICAL WHITE PAPER

About Jenkins

Jenkins is an industry-standard tool used by the DevOps community to orchestrate and schedule
software build processes and continuous integration and continuous delivery (CI/CD) pipelines.
Jenkins' architecture of controller and agent nodes lends itself well to dynamic environments, like
those available in the public cloud such as Amazon Web Services (AWS). With the accelerated
adoption of containers and new automation and orchestration tools like Kubernetes, developers are
turning more frequently to managed solutions like Amazon Elastic Kubernetes Service (Amazon EKS).
This ability to automate software builds, testing, quality checks, and continuous deployment brings
great flexibility to how Jenkins can be leveraged. The flexibility of the cloud-native technologies has
brought dramatic improvements in "time to value," as well as providing both the development and
deployment environments for the enterprise.

Introduction

Running production-grade and enterprise-ready Jenkins in the cloud requires an elastic, resilient, and fault-tolerant
architecture. Jenkins agents are very memory- and |O-intensive workloads and the on-demand nature of the cloud is ideal for
this. However, the need for high-performance access to data and automating processes around both provisioning and
protecting that data has driven many organizations to choose between high availability (HA) or performance. Amazon Elastic
Block Store (Amazon EBS)volumes are an ideal option to meet the performance requirements of a Cl/CD pipeline, but they are
bound by the borders of the availability zone (AZ) where they were created. Customers trying to implement HA workloads in
the cloud can benefit from Portworx® solutions to enable cross-AZ replication, business continuity, and data protection with a
cloud-native approach. Portworx by Pure Storage® provides an automation and orchestration layer for data management that

allows enterprises to maintain the high availability they need while running Jenkins on EBS.

Portworx is a data management solution that serves applications and deployments in Kubernetes clusters. Portworx itself is
deployed natively within Kubernetes and extends the automation capabilities down into the infrastructure to remove the
complexities of managing data. Portworx provides simple and easy-to-consume storage classes that are usable by stateful
applications in a Kubernetes cluster. In AWS, Portworx does this by claiming EBS volumes that are attached to the worker
nodes of a Kubernetes cluster (EC2 instances). These volumes are then abstracted by the Portworx data management control
plane to deliver a storage pool that offers and automatically provisions container granular volumes from these available
resources. When an application like Jenkins creates a persistent volume claim (PVC) with a Portworx storage class, Portworx
will automatically provision container volumes and address the capacity, level of performance, data protection, security, and
availability required for the application. Portworx is topology-aware and ensures that as part of the provisioning process, a
replica of the data is maintained on another node in another availability zone. In the event of a failure, Portworx influences the
Kubernetes scheduler to restart Jenkins in another AZ alongside the replicated data in a matter of seconds. With Portworx,
clusters can be highly dense, meaning that you can greatly scale the number of containers per host. While the

recommendation from Kubernetes is 100 pods per VM, Portworx has customers routinely running 200-300 pods per host.

o 3

TECHNICAL WHITE PAPER

Data protection is critical for any IT endeavor, but traditional, virtual-machine-based data protection solutions have proven
inadequate for providing recoverable backups of Kubernetes workloads. Built exclusively for containerized applications,
Portworx PX-Backup solves these shortfalls and protects your applications, including data, application configuration, and
Kubernetes objects. It does this with a single click at the Kubernetes pod, namespace, or cluster level. Enabling application-
aware, zero-data-loss backup and fast recovery for even complex distributed applications, PX-Backup delivers true multi-
cloud availability.

Reference Architecture Diagram

Below is the reference architecture for AWS EKS and Portworx.

l AWT KS J

- m - - A - - - = A - m—— - - A
1 Availability Zone 1 1 Availability Zone 1 1 Availability Zone 1
: S S :
! ! ' convoter ! ! !
! 0000 ! ! Q000 ! Q000 .
. 0000 . . 0000 . . 0000 .
: Storag Node Agents : : Storagé Node Agents : : Storag Node Agents :
1 1 1 I 1 1
| @ 2288 == l@ oo © 2999
: - @@@@ : Pool : ‘ @@@@: Pool : = @@@@ :
L-- 55-- ------- Replication =~ — -1‘2__:_:_:_::___-' T TReplication -~ - e -

A6 aa8 86
GP2 GP2 GP2 GP2 GP2 GP2 GP2
Amazon Elastic Amazon Elastic Amazon Elastic
Block Store (EBS) Block Store (EBS) Block Store (EBS)

Figure 1. Portworx reference architecture

Prerequisites

AWS EC2 Instance Sizing

The instances used with Portworx must be sized to handle both the storage operations as well as the applications you will be
deploying to the cluster. For Portworx, we recommend four vCPUs, 4GB of RAM, and 10Gbit networking at a minimum. We
recommend using these as a baseline, and then factor in your application needs. In this example, we chose M5.xlarge
instances (four vCPUs, 16GB RAM, 10G network) for Portworx, Jenkins, and agent pods to use. Your workload needs may vary.

Utilities

To complete the steps outlined in this guide, you will need to install and configure the following utilities:

o 4

TECHNICAL WHITE PAPER

AWS CLI v2: This is the primary component for interacting with AWS Cloud resources from the command line, and it will be
needed for additional utilities to handle authentication from your management workstation. Additional information and

installation instructions are available at https://docs.aws.amazon.com/cli/latest/userquide/install-cliv2.html.

EKSCTL: This utility was developed for managing EKS clusters, and it is used here to deploy EKS resources. To install the
latest release of eksctl, follow the instructions at https://eksctl.io/introduction/#installation.

KUBECTL: This is the primary CLI utility for Kubernetes, and it will be used extensively in this guide. You can install it using the
instructions here: https://kubernetes.io/docs/tasks/tools/.

HELM v3: Helm is a popular package manager and deployment tool for Kubernetes, allowing application developers to
package applications in a templated format enabling consistent deployments with all the necessary components included.

Helm v3 should be installed based on the instructions at https://helm.sh/docs/intro/install/.

Configuring AWS EKS and Portworx

Documentation on creating a Portworx-enabled EKS cluster can be found on the Portworx website at
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/. Portworx can also be deployed easily via the AWS

Marketplace located here: https://portworx.com/awsmarketplace.

The recommended method to deploy a Portworx-enabled EKS environment is to use the eksctl utility and provide a

configuration file. The reference guide can be found here: https://docs.portworx.com/portworx-install-with-

kubernetes/cloud/aws/aws-eks/eksctl/eksctl-operator/.

Depending on the performance needs and the number of simultaneous agent tasks an organization might decide to run,
implementing Portworx on EKS provides the flexibility to grow your development environment as your needs change. This
unique functionality allows optimal resource use and provides true flexibility in how the deployment operates and scales. The
number of storage nodes is entirely configurable. It is defined in the eksctl configuration file and can be adjusted to suit your

needs at the time of deployment or modified later as utilization might change.

Here is a link to the available deployment architectures to help guide your decision: https://docs.portworx.com/cloud-

references/deployment-arch/.

The first step involves granting Portworx permissions to create and attach EBS volumes. It is a critical step. To keep this
process simple, we suggest implementing this at the instance level with an identity and access management (IAM) policy
attached through the eksctl configuration file.

In the example config.yaml file below, the name of the segment identifier (SID) is set to "EKSPortworxEC2mgmt". The
Amazon resource name (ARN) is then included as part of the configuration for your node groups so the provisioned hosts can
perform the required tasks.

The IAM policy can be created using the AWS CLI or IAM console. In the console, select the option to create a new IAM policy.

Navigate to the JSON tab and define your policy. Here is an example IAM policy that includes all the needed permissions:

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html
https://eksctl.io/introduction/#installation
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/docs/intro/install/
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/
https://portworx.com/awsmarketplace
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/eksctl/eksctl-operator/
https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/eksctl/eksctl-operator/
https://docs.portworx.com/cloud-references/deployment-arch/
https://docs.portworx.com/cloud-references/deployment-arch/

TECHNICAL WHITE PAPER

"Version":
"Statement”: |
{
"Sid": "

"Effect”:

"Action™:

"

"

"

"

"

"

"

"

"

"2012-

ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:
ec2:

ec2:

10-17",

EKSPortworxEC2mgmt ™,

"Allow",

(
AttachVolume",
ModifyVolume™,
DetachVolume™,
CreateTags”,
CreateVolume™,
DeleteTags”,
DeleteVolume™,
DescribeTags"”,
DescribeVolumeAttribute”,
DescribeVolumesModifications™,
DescribeVolumeStatus”,
DescribeVolumes™,

DescribeInstances™”,

"autoscaling:DescribeAutoScalingGroups™

Is

"Resource”: [

"y
*

If you are also deploying Portworx PX-Backup, then also create the following IAM policy using the JSON tab. This policy is
named "EKS_PXBackup_Permissions

"Version":
"Statement”: |
{

"8id":

"Effect”:

"Action":

"

ec2
ec2

ec2

"2012-

for this example.

10-17",

"EKS_PXBackup_Permissions™,

"Allow",

(
DeleteSnapshot™,
DescribelInstances™”,

CreateTags”,

TECHNICAL WHITE PAPER

"

ec2:CreateSnapshots”,

"

ec2:DescribeVolumes™,

"

ec2:CreateSnapshot™,

"

ec2:DescribeRegions™,

"

ec2:DescribeSnapshots™,

"

ec2:CreateVolume”

Is

"Resource”: "#"

Once the policies have been created, create your cluster. Note that the resulting IAM policies are attached to the node group
in the eksctl configuration file below.

Deploy EKS cluster using a variation of the following config.yaml file:
NOTE: Values in <brackets> should be changed to reflect your needs.

NOTE: For NodeGroup a minimum of three storage nodes are required. These can perform both workload and storage
operations. More than three can be allocated based on a customer's need; however, it is recommended that the number of
storage nodes per availability zone be changed in the Portworx spec generator or example file below to reflect any changes to
the total number of storage nodes.

apiVersion: eksctl.io/vlalphab
kind: ClusterConfig
metadata:
name: <Cluster Name>
region: <Region=>
version: 1.20
iam:
withOIDC: true
addons :
- name: vpc-cni
attachPolicyARNs:
- arn:aws:iam: :aws:policy/AmazonEKS_CNI_Policy
managedNodeGroups :
- name: storage-node
instanceType: <mb5.xlarge> # Select Instance type with minimum 4 vCPUs, 8Gi of Memory, and 10Gbit
networking for optimal performance
minSize: 3 # Minimum configuration - Change to suite needs
maxSize: 3 # Storage Nodes Min and Max must be set to equal values
volumeSize: 30

#ami: auto

TECHNICAL WHITE PAPER

iam:
withOIDC: true
addons :
- name: vpc-cni
attachPolicyARNs:
- arn:aws:iam: :aws:policy/AmazonEKS_CNI_Policy
managedNodeGroups :
- name: storage-node
instanceType: <mb5.xlarge> # Select Instance type with minimum 4 vCPUs, 8Gi of Memory, and 10Gbit
networking for optimal performance
minSize: 3 # Minimum configuration - Change to suit needs
maxSize: 3 # Storage Nodes Min and Max must be set to equal values
volumeSize: 30
#ami: auto
amiFamily: AmazonlLinux2
labels: {role: worker, "portworx.io/node-type”: "storage", "px/metadata-node”:"true"}
tags:
nodegroup-role: worker
ssh:
allow: true
Set to the path for your key file. See eksctl documentation for more details.
publicKeyPath: < $HOME/.ssh/id-rsa.pub >
iam:
attachPolicyARNs:
- arn:aws:iam: :aws:policy/AmazonEKSWorkerNodePolicy
- arn:aws:iam: :aws:policy/AmazonEKS_CNI_Policy
- arn:aws:iam: :aws:policy/AmazonEC2ContainerRegistryReadOnly
- arn:aws:iam: :aws:policy/ElasticLoadBalancingFullAccess
- arn:aws:iam: :<AWSAccountNumber>:policy/EKSPortworxEC2mgmt

If you are also installing PX-Backup, also create the optional IAM Policy above and add it here

also.
- arn:aws:iam: : <AlNSAccountNumber>:policy/EKS_PXBackup_Permissions
withAddonPolicies:
imageBuilder: true
autoScaler: true
ebs: true
fsx: true
efs: true
albIngress: true
cloudWatch: true
availabilityZones: ['<region-AZ1>', '<region-AZ2', 'region-AZ3']

To deploy a new EKS cluster using the above configuration, save the file with the name cluster-config.yaml and issue the

following command: eksctl create cluster -f cluster-config.yaml.

Allow up to 30 minutes after issuing the command to create your EKS cluster for it to become available in your AWS account.
There are additional components that may be needed for a production-ready EKS cluster, so please consult Amazon's
documentation for items like the ALB/ELB Load Balancer Controller, CertManager, and ExternalDNS for Route53.

o 8

TECHNICAL WHITE PAPER

Installing and Configuring Portworx on Amazon EKS

This section provides a walkthrough of the steps to install and configure Portworx on Amazon EKS; however, before
proceeding, we recommend that you read the full documentation and instructions on the Portworx website

https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/. For additional information and options, the

documentation website provides extensive resources for you to explore. Also, be sure to review all volume sizes and types in
this document and adjust them to reflect your workloads. They are provided as examples and are likely to not align exactly

with your needs.

Install the Portworx Operator

To install the Portworx Operator, run kubectl create -f https://install.portworx.com/2.7?comp=pxoperator.

Once the operator is installed, we need to provide a specification file to deploy the Portworx cluster. Navigate to

https://central.portworx.com to generate the needed Kubernetes manifest that you will deploy to your cluster. We have also

included an example specification that you can deploy, but using the Portworx spec generator is preferred.

First, you will need to create an account on the Portworx website and log in. After logging in to the website, you are presented

with the spec generator wizard. On the first tab, select Portworx Enterprise and click > Next in the bottom left corner.

Portworx < Portworx PX-Backup
Essentials Enterprise

Fre E
+ 5 nodes + 1000 nodes « Helm based install

+ 5 TB Storage + Unlimited Storage « Multi-cluster
backup/restore

trial y trial

Unlimit
- Support for PX and
cloud backends

< Application
consistent backups

Multi-user CIDC
Schedule policies

and

Full features .~ Limited features

On the next page , you'll find the basic configuration options.

https://docs.portworx.com/portworx-install-with-kubernetes/cloud/aws/aws-eks/
https://install.portworx.com/2.7?comp=pxoperator
https://central.portworx.com/

TECHNICAL WHITE PAPER

On this page, make the following selections:

1. Select Use the Portworx Operator.

2. For Portworx Version, select the latest available version (presently 2.7).

« Spec Generator - Enterprise

Storage Network Customize

=) =

Use the Portworx Operator @

Portworx Operator only supports kubernetes versions 112 and up.

px-enterprise

/metadata-node=true. Only the nodes with the label will participate in the kvdb

For example: kubectl label nades nodel node2 node3 px/metadata-nodestrue

Back | Next

Click Next, and you are presented with the storage options. The following steps are for an example configuration for AWS:

make sure that the volume type and size are appropriate for your deployment:

1. Select Cloud, and then select AWS.
2. Configure storage devices:
a. Select Create Using a Spec.
b. Under Select EBS Volume Type, select GP2 or |01.

NOTE: When selecting cloud volume configurations, consider your workloads and the characteristics of the available
drive. GP2 provides a solution for balancing cost and performance. 101 is recommended for production workloads that

need a consistent input/output operations per second (IOPS) and throughput.

c. Size: 500
d. Max storage nodes per availability zone: 1

e. Select Auto create journal device.

TECHNICAL WHITE PAPER

< Spec Generator - Enterprise

B Basic v Storage Network Customize

e i

Select Cloud Platform *

Configure storage devices

Auto create journal device

Back | Next

3. Click Next to proceed to the network setup.

On this page, unless you have configured multiple network interfaces on your EKS hosts, all values can be left at the default

values.
< Spec Generator - Enterprise

B Basic v £ Storage v Network Customize

13 e

Interface(s)

Advanced Settings

Back | Next

Click Next to continue to the Customize page:

1. At the top of the page, select Amazon Elastic Container Service for Kubernetes (EKS).
2. Forenvironment variables, add ENABLE_ASG_STORAGE_PARTITIONING = true if you are using Auto Scaling groups.
3. Under Advanced Settings, select the following:

a. Select Enable Stork.

b. If needed based on your use case, select Enable CSI.

o 1

TECHNICAL WHITE PAPER

c. Select Enable Monitoring.
4. In Cluster Name Prefix, enter an appropriate value, such as the cluster name. .

5. In Secret Store Type, you can select your Kubernetes Secrets, but Portworx can also leverage AWS's KMS service,

Hashicorp Vault, or other standard KMS solutions.

Click Finish and agree to the licensing agreement to generate the manifests and spec files.

Customize

Environment Variables
Registry And Image Settings
Security Settings

Advanced Settings

Customize

Environment Variables

ENABLE_ASG_STORAGE_PAR = true | ar

List of environment variables (name,value p: hat will be exported to Portworx.
has the env variables list that Portworx supports.

Registry And Image Settings
Security Settings

Advanced Settings

Customize

Environment Variables
Registry And Image Settings
Security Settings

Advanced Settings

Enable Stork
Enable CSI

Enable Monitoring

px-cluster Kubernetes

TECHNICAL WHITE PAPER

The next page provides the instructions to install Portworx into your EKS cluster.

Portworx Operator

2 kubectl apply -f 'htt install.portworx.com/2.67?
operator=truesmc=false&kbve Truesmz=1&5=%221ype%30 51ze%3D500%22&)=autoskd=type%3Dgp2%2C5ize%3D150&c=px-cluster-b@bs73e5—
350 f-499e-9ad8-113bb27069fb&eks=t rue&stork=truedmon=true&st=kBs&e=ENABLE_ASG_STORAGE_PARTITIONING%3Dtrue&promop=true’

Save Spec

Comma separated Tags

Download = Save Spec

The first step on this page was covered previously, and it is not necessary to repeat the instructions.

kubectl apply -f 'https:f}'inEtall.purtwnrx.cumfz.ﬁ?cump:p}:nperator'

Once the operator has been deployed, you can apply your StorageCluster specification by copying and pasting the command
shown here on the page:
L] kubectl apply -f ‘https://install.portworx.com/2.67

operator=trueimc=falseikbver=ab=truetmz=1&s=%22type%3Dgp2%2C5ize%3D0500%22&j=autohkd=type%3Dgp2%2Csize%30150&c=px~cluster-b@b573e5-
350f-499%e-9ad8-113bb27069Tb&eks=true&stork=truedmon=t rue&st=k8s&e=ENABLE_ASG_STORAGE_PARTITIONING%3Dtrue&promop=true’

Finally, you are given the option to save the spec files in PX Central for later reference or reuse by entering a name and any

relevant tags, and then clicking Save Spec.

Save Spec

Comma separated Tags

Download = Save Spec

Below is an example specification for StorageCluster that you can use. Simply save it in a file named storagecluster.yaml and
apply it to the cluster. The Portworx Operator will handle the rest of the deployment. It takes approximately 5-10 minutes for

Portworx to fully initialize the cluster.

o 13

TECHNICAL WHITE PAPER

kind: StorageCluster
apiVersion: core.libopenstorage.org/vil
metadata:
name: px-cluster-jenkins
namespace: kube-system
annotations:
portworx.io/is-eks: "true"

spec:

image: portworx/oci-monitor:2.7.2

imagePullPolicy: Always

kvdb:

internal: true
cloudStorage:

deviceSpecs:

- type=gp2,size=500
journalDeviceSpec: auto
kvdbDeviceSpec: tuype=gp2,size=150
maxStorageNodesPerZone: 3
secretsProvider: k8s
stork:

enabled: true

args:

webhook -controller: "true"”
autopilot:

enabled: true

providers:

- name: default

tuype: prometheus
params :
url: http://px-prometheus:9090
env:
- name: "ENABLE_ASG_STORAGE_PARTITIONING"
value: "true”
monitoring:
prometheus:
enabled: true

exportMetrics: true

Prepare Cluster for Installing Jenkins

To prepare the cluster to install Jenkins, first create a new namespace in your EKS cluster to run Jenkins: kubectl create

namespace Jenkins.

Now that Portworx is installed and the StorageCluster object has been defined, create two Kubernetes StorageClass objects

for Jenkins. The first will be used for the controller pods and the second for agent pods.

O 14

TECHNICAL WHITE PAPER

Controller StorageClass

The first step to create a StorageClass object for the controller pods is to create and save a file named controller-sc.yaml and
apply it using kubectl. The contents of this file should be:

kind: StorageClass
apiVersion: storage.k8s.io/vil
metadata:
name: px-sharedvé4-sc
provisioner: kubernetes.io/portworx-volume
parameters:
repl: "3"
sharedv4: "true”
sharedv4_mount_options: "vers=4.0"
io_profile: db_remote

allowVolumeExpansion: "true"”

Next, create a file named controller-pvc.yaml with the following contents:

kind: PersistentVolumeClaim
apiVersion: vi
metadata:
name: jenkins-home-pvc
namespace: jenkins
labels:
app: jenkins
annotations:
volume.beta.kubernetes.io/storage-class: px-sharedvéd-sc
spec:
accesslodes:
- ReadWiriteMany
resources:
requests:

storage: 100Gi

This will create a ReadWriteMany volume, which can be used for both active and active-passive Jenkins controller
deployments.

Agent StorageClass
To create a StorageClass object for agent pods, create and save a file named jenkins-agent-sc.yaml and apply it using

kubectl. The contents of this file should be:

kind: StorageClass
apiVersion: storage.k8s.io/vl

metadata:

{‘:,) 15

TECHNICAL WHITE PAPER

name: jenkins-agent-sc
provisioner: kubernetes.io/portworx-volume
parameters:

repl: "1"

priority_io: high

allowVolumeExpansion: "true™”

AutoPilot Rules (Optional)

To allow your EKS cluster to dynamically grow your persistent volume claims, you will need to define the AutoPilot rules. There
are two rule types that you can define:

e Storage pool capacity rule: This rule allows Portworx to allocate additional EBS volumes automatically through monitoring
and API calls. This rule is optional and should be used for workloads where there is not a clear understanding of the
storage needs.’

¢ Persistent volume claim rule: This type of rule allows the PVC for your Jenkins controller to dynamically grow, allowing
you to start small and expand it within the bounds of your Storage Pool based on utilization or a user-defined limit. It is
highly recommended that you use this rule for Jenkins deployments.

Please note the thresholds and capacity controls to ensure you are optimizing your pool of resources for your workload.

Below is an example of an optional AutoPilot storage pool rule.

apiVersion: autopilot.libopenstorage.org/vialphal
kind: AutopilotRule
metadata:
name: pool-expand
spec:
enforcement: required
conditions are the symptoms to evaluate. All conditions are AND'ed conditions:
expressions:
pool available capacity less than 70%
- key: "100 * (px_pool_stats_available_bytes / px_pool_stats_total_bytes)"”
operator: Lt
values:
- "70"
pool total capacity should not exceed 2TB
- key: "px_pool_stats_total_bytes / (1024%1024%1024)"
operator: Lt
values:
- "2000"
action to perform when condition is true

actions:

TECHNICAL WHITE PAPER

- name: "openstorage.io.action.storagepool/expand”
params :
resize pool by scalepercentage of current size
scalepercentage: "50"
when scaling, add disks to the pool

scaletype: "add-disk"”

Recommended AutoPilot Rule

The following AutoPilot rule for resizing the Jenkins controller volume PVC is recommended:

apiVersion: autopilot.libopenstorage.org/vialphal
kind: AutopilotRule
metadata:
name: volume-resize
spec:
selector filters the objects affected by this rule given labels selector:
matchLabels:
app: jenkins
namespaceSelector selects the namespaces of the objects affected by this rule
conditions are the symptoms to evaluate. All conditions are AND'ed conditions:
volume usage should be less than 70%
expressions:
- key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)"
operator: Gt
values:
- 70"
action to perform when condition is true
actions:
- name: openstorage.io.action.volume/resize
params :
resize volume by scalepercentage of current size
scalepercentage: "50"
volume capacity should not exceed 400GiB

maxsize: "400Gi"

Deploy Jenkins to Your Portworx-enabled EKS Cluster

At this point, you are now ready to install Jenkins. Jenkins is packaged in a Helm chart for easy deployment.

Next, add the Jenkins repository to your Helm installation with the following commands:

helm repo add jenkinsci https://charts.jenkins.io

helm repo update

{‘:,) 17

TECHNICAL WHITE PAPER

Then you will need to obtain the values.yaml file from the Helm chart with the following command:

curl -o jenkins-values.yaml \ https://raw.githubusercontent.com/jenkinsci/helm-

charts/main/charts/jenkins/values.yaml

Review the contents of the values.yaml file for any customizations you may need. To complete the setup of Jenkins with
Portworx, create an override-values.yaml file with the following contents. Other customizations may be needed to

accommodate your CI/CD pipeline.

controller:

initializeOnce: true
schedulerName: "stork”
agent:

fsgroup: 1000

volumes:

- type: PVC

claimName: jenkins-home-pvc

mountPath: /var/jenkins_home

readOnly: false
workspaceVolume:

- type: DynamicPVC
storageClassName: jenkins-agent-sc
requestSize: 20
accesslModes: ReadlWiriteOnce

persistence:

enabled: true

existingClaim: jenkins-home-pvc

To deploy using these settings, issue the following command: helm install jenkins -f values.yaml -f override-

values.yaml jenkinsci/jenkins -n jenkins

This will deploy Jenkins to your cluster with Portworx orchestrating your storage operations. Follow the instructions provided

at the end of the install to obtain the URL and username/password to access your Jenkins environment.

IMPORTANT: Jenkins uses a Config Map to maintain the configuration during pod restarts. It is highly advised that you
review the "Configuration as Code" section under "Managing Jenkins" in the Jenkins Ul and use it as a reference to
keep the Config Map consistent with your running configuration. If you chose not to do this, some configuration

changes can be lost if the pod restarts.

Deploy and Configure a Disaster Recovery Site

Portworx provides a true disaster recovery (DR) and business continuity (BC) solution with the ability to replicate your
applications between two different EKS clusters in different availability zones or regions, or other variations of Kubernetes that
might live outside the Amazon ecosystem. Using this capability allows businesses to ensure that their most critical applications

are always available.

{‘:,) 18

TECHNICAL WHITE PAPER

Portworx Enterprise can provide both synchronous and asynchronous disaster recovery configurations, allowing you to build a
DR/BC capability for almost any scenario. Metro-DR, or synchronous replication, requires a connection between the sites with
adequate bandwidth and a maximum of 10ms latency between the EKS hosts. This is only achievable using a single region and
multiple availability zones. This can offer cost savings, but it lacks true business continuity if the selected region suffers a

catastrophic event.

For this white paper, region-to-region DR was selected as the preferred DR solution. This is configured as Async-DR using our
3D-Snapshot capabilities that include the Kubernetes objects and manifests that are needed, along with the data volumes to
maintain an application-consistent DR site. Replication schedules are configurable by the cluster administrator and offer as low

as a 10-minute recovery point objective (RPO) and the ability to restore service in minutes.

Prepare Your AWS Cloud for Disaster Recovery

Portworx Disaster Recovery—enabled clusters use an S3 bucket as an intermediary storage location that is accessible from
both EKS clusters. As part of the configuration process, we use an AWS access key and a secret key. To ensure that you
maintain a secure environment, it is best practice and strongly recommended that a separate IAM identity is created for this
purpose. The identity should have the two IAM policies defined at the beginning of this guide attached to it, as well as policies
allowing interaction with S3. Once you have created this identity and created access and secret keys, make sure to save them
for future use in this white paper. When AWS account information is part of a step, please use this new IAM Identity to satisfy

the requirements.

To configure Disaster Recovery, first select a second region and deploy a similar EKS cluster. The most important factor is that
you need at least three storage nodes to accommodate the configuration used in the Jenkins home directory storage class. If

look back, you will see that a replication factor of three is used to ensure the highest availability.

You can follow the above instructions to deploy a second cluster by changing the values necessary to reflect the use of a
different region. Once that is done, it is necessary to create a VPC peering connection or transit gateway to allow connectivity
between the clusters. See the links below to determine which will work best in your environment. Also, be sure to add rules to
the security groups associated with both clusters to allow bidirectional communication. Once connectivity has been verified,
you are ready to create a cluster pair and configure replication. For more information on VPC peering, see

https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html. For more information on transit

gateways, see https://docs.aws.amazon.com/vpc/latest/tgw/tgw-getting-started.html.

Create a Cluster Pair and Admin Namespace

To begin pairing the two clusters for replication, first establish an admin namespace. This is recommended so cluster
administrators can replicate any namespace in the cluster without having to have full access to the kube-system namespace.

Here are the instructions to configure and begin using an admin namespace with Portworx Enterprise:

1. First, obtain the storkctl command-line utility from either cluster using the platform-specific instructions found on the
Portworx documentation site. There are instructions for Linux, macOS, and Windows available. More information is available

at: https://docs.portworx.com/portworx-install-with-kubernetes/disaster-recovery/async-dr/.

2. Once you have the storkctl utility installed, you then need to provide credentials to Stork so it can access the needed
resources for migrations. Use the IAM Identity's credentials in your AWS account, and ensure that this account has the

same roles that were applied to the EKS clusters during deployment.

o 19

https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html
https://docs.aws.amazon.com/vpc/latest/tgw/tgw-getting-started.html
https://docs.portworx.com/portworx-install-with-kubernetes/disaster-recovery/async-dr/

TECHNICAL WHITE PAPER

IMPORTANT: Until otherwise instructed, the following steps must be performed on both the source and destination

clusters.

3. Create a Kubernetes namespace to serve as the admin namespace: kubectl create namespace migrations

4. Next, create a secret in this new namespace using the AWS access key ID and secret access key created for the

previously discussed IAM Identity. You should receive confirmation that the Kubernetes secret was created.

kubectl create secret generic --from-literal=aws_access_key_id=<AWNS_ACCESS_KEY_ID> --from-
literal=aws_secret_access_key=<AWllS-SECRET-ACCESS_KEY> -n kube-system aws_creds

5. Edit the StorageCluster object in the kube-system namespace and add a volumeMount for the newly created secret. To
edit the StorageCluster object, run kubectl edit stc -n kube-system.

6. Move down through the manifest and find the stork: configuration and modify it to look like the following:

stork:

args:
admin-namespace: migrations
health-monitor-interval: "30"
webhook-controller: "true"”

enabled: true

volumes:

- mountPath: /root/.aws/
name: aws-creds
readOnly: true
secret:

secretName: aws-creds

Upon saving the changes to the StorageCluster object, a new replica set will be created and the Stork pods will restart to

implement the changes in a rolling update.

7. On the destination cluster obtain the Cluster ID by issuing the following command:

PX_POD=$(kubectl get pods -1 name=portworx -n kube-system -o jsonpath='{.items[0].metadata.name}')
&% kubectl exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl status | grep UUID | awk '{print $3}’

Copy the output to a notepad-type app for use in the following steps. It will be referenced as <destination_cluster_uuid>.

To use the Portworx CLI, you can either log into one of your worker nodes and run the command from /opt/pwx/bin/ where it is
located, or more conveniently create a local alias to access the CLI tool from inside a Portworx pod. For Linux or macOS, add

the following to your shell configuration file (bash, zsh, etc.)

export PX_POD="$(kubectl get pods -1 name=portworx -n kube-system -o
jsonpath="{.items[0] .metadata.name})"

alias pxctl="kubectl exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl”

{‘:,) 20

TECHNICAL WHITE PAPER

8. Now provide Portworx with the IAM Identity's AWS credentials. The command to use is:

pxctl credentials create --provider s3 --s3-access-key <AWS_ACCESS_KEY_ID> --s3-secret-key <AWNS-
SECRET-ACCESS_KEY> --s3-region <region of source cluster> --s3-endpoint s3.amazonaws.com --s3-

storage-class STANDARD clusterPair_<destination_cluster_uuid>

As a reminder, all steps for creating a cluster pair to this point must be performed on both the source and destination clusters.

The only exception is the command to obtain the Cluster ID.
IMPORTANT: The following steps will be performed on specific clusters.

9. To create the cluster pair, on the destination cluster, first, run this command and pipe it to a file for editing: storkctl

generate clusterpair -n migrations remotecluster >> clusterpair.yaml.

Once the file has been created, edit the file and replace the contents of 'options' in the file with the following.

options:
ip: "<IP of any Portworx node in DR Cluster>"
port: "900L1"
token: "<cluster token from DR Cluster>"

mode: DisasterRecovery?

10. To obtain the cluster token, run the following on the destination cluster: pxctl cluster token show. Use the output
for the token requested above. Once the file has been modified, you will apply it to the source (production) cluster using:
kubectl apply -f clusterpair.yaml
You can check the status of the cluster pair with: storkctl get clusterpair -n migrations. The output should

look like this:

}y storkctl get clusterpair -n migrations

NAME STORAGE-STATUS SCHEDULER-STATUS CREATED
remotecluster Ready Ready 88 Jun 21 17:44 EDT

Next, create a schedule policy for the replication. This is where you can configure how frequently the DR replication occurs.

Currently, our shortest supported interval is every five minutes, resulting in an RPO of approximately 10 to 15 minutes.

Below is an example SchedulePolicy manifest that configures replication every 15 minutes, as well as a daily, weekly, and
monthly example. Configure the replication interval based on your business needs and RPO policies. Multiple schedules can be

created if different applications have different requirements.

apiVersion: stork.libopenstorage.org/vlialphal
kind: SchedulePolicy

O 21

TECHNICAL WHITE PAPER

metadata:
name: jenkins-dr-policy
namespace: migrations
policy:
interval:
intervalMinutes: 15
daily:
time: "10:14PM"
weekly:
day: "Thursday”
time: "10:13PM"
monthly:
date: 14
time: "8:06PM"

Next, create a MigrationSchedule manifest that replicates the Jenkins namespace, where you have deployed Jenkins:

apiVersion: stork.libopenstorage.org/vialphal
kind: MigrationSchedule
metadata:
name: jenkins-async-dr
namespace: migrations
spec:
template:
spec:
clusterPair: remotecluster
includeResources: true
includeVolumes: true
startApplications: false
namespaces :
- jenkins
adminClusterPair: remotecluster
purgeDeletedResources: false

schedulePolicyName: jenkins-dr-policy

Since you are configuring disaster recovery, take note that the options startApplications and purgeDeletedResources have
been set to false. Migrations and migration schedules can be used for disaster recovery replication like you are doing here. But
they can also be used for one-time application migrations between clusters or namespaces within a cluster by changing the
kind to Migrations and omitting schedulePolicyName. This type of migration begins once the manifest is applied.

For disaster recovery, apply the manifest as displayed above to the source cluster; replication will begin shortly after. The first
interval is a full copy of the selected namespaces. Every following replication interval uses incremental snapshots to minimize
the amount of data sent. Also, on AWS, Portworx uses an S3 bucket to hold the migration data during the replication to help

further reduce transport costs.

{‘:,) 22

TECHNICAL WHITE PAPER

Each time the replication occurs, a migrations object is created in the migrations namespace. After 5-10 minutes, you can

verify the status of the replication by issuing the following commands:

kubectl get migrations -n migrations

kubectl describe migrations <selected migration> -n kube-system

The output will list all objects that are part of the DR migration. For brevity, we have removed the bulk of the output; however,

note that at the end of this block, "Stage: Final" has a status of successful.

Some output was removed in the interest of brevity

Name : jenkins-async-dr-interval-2021-06-09-200912
Namespace: migrations
Labels: <none>

Annotations: <none>

API Version: stork.libopenstorage.org/vialphal

Kind: Migration
Status:
Finish Timestamp: 2021-06-09T20:10:51Z2
Resources:
Group: core
Kind: PersistentVolume
Name : pvc-2f05d999-b391-46¢cc-ada2-bdeel99c98e9
Namespace:
Reason: Resource migrated successfully
Version: vl
Group: rbac.authorization.k8s.io
Kind: Role
Name : jenkins-casc-reload

Namespace: jenkins

Reason: Resource migrated successfully
Status: Successful

Kind: RoleBinding

Name : jenkins-watch-configmaps

Namespace: jenkins

Reason: Resource migrated successfully
Status: Successful
Version: vl
Stage: Final
Status: Successful
Volumes:
Namespace: jenkins

Persistent Volume Claim: jenkins

Reason: Migration successful for volume

Status: Successful

Volume: pvc-2f05d999-b391-46cc-ada2-bdeel99c98e9
Namespace: jenkins

{‘:,) 23

TECHNICAL WHITE PAPER

Persistent Volume Claim:

jenkins-plugin-dir

Reason: Migration successful for volume

Status: Successful

Volume: pvc-9a0d9983-ffab-4d7e-bllb-07cffb59c574
Namespace: jenkins

Persistent Volume Claim:

jenkins-plugins

Reason: Migration successful for volume

Status: Successful

Volume: pvc-72e65c45-f916-4f83-9c9a-ead8f96f443F
Namespace: jenkins

Persistent Volume Claim:

sc-config-volume

Reason: Migration successful for volume
Status: Successful
Volume: pvc-e4777535-2513-4cdf-98c5-8ale9a3chb869

Let's look at a few important details. In the migration manifest, you specified that all objects from the jenkins namespace be

replicated. This can be validated by looking at the output from querying the objects in the namespace on the target cluster.

Switching to that cluster, you can issue kubectl get all -n jenkins

kubectx px-jenkins-drl
Switched to context "px-jenkins-drl".
(e

kubectl get all -n jenkins
NAME TYPE
ClusterIP
ClusterIP

service/jenkins
service/jenkins-agent

NAME
statefulset.apps/jenkins @/@
(e

READY AGE

CLUSTER-IP
10.100.27.49
10.100.23.241

6m20s

» P master 12

EXTERNAL-IP
<none>
<none=>

PORT(S) AGE
8ese/TCP 6m20s
50000/TCP 6m20s

Notice that the Jenkins StatefulSet controller has no instances running. Everything is now replicated to the DR cluster, but it

has not been started. Successive replications will keep these objects and the persistent volumes updated based on your

replication interval. Also, at any time, you can suspend the replication and scale up the StatefulSet controller to test the

viability of your DR site. See the Solution Testing and Validation section for more information.

Install and Configure PX-Backup

Installation

First, create a StorageClass object for the PX-Backup?® database and other components using the following manifest. Copy this

into an editor and save it as px-backup-sc.yaml and then applying it to your cluster.

kind: StorageClass
apiVersion: storage.k8s.io/vl

metadata:

o 24

TECHNICAL WHITE PAPER

name: px-backup-sc
provisioner: kubernetes.io/portworx-volume
parameters:

repl: "2"

io_profile: auto

allowVolumeExpansion: true

To install PX-Backup to your environment, open https://central.portworx.com and log in to your account. In the Portworx spec

generator, select PX-Backup, and then scroll to the bottom and click Next.

Portworx Portworx « PX-Backup
Essentials Enterprise

Freef |
5 nodes + 1000 nodes ~ Helm based

5 TB Storage « Unlimited install
Storage v Multi-cluster
backup/restore

Support for PX

Unlim

Then, on the Spec Details page, under Select your environment, choose Cloud. In the Storage Class Name field, enter “px-
backup-sc” from the manifest above that was applied to the cluster. If you are using OpenID Connect (OIDC), you can

configure the connection here, as well as if you have a custom registry with the PX-Backup images. Click Next to proceed.
PX-Backup
Spec Details Complete * required
Namespace * px-backup

Install Using e Helm3

Select your environment
OnPrem

Use storage class @

Storage Class Name px-backup-sc

Use your OIDC

Use custom registry @

o 25

https://central.portworx.com/

TECHNICAL WHITE PAPER

On the next screen, you are provided with the Helm commands to install PX-Backup. Since you installed Helm before installing

Jenkins, you are ready to issue the commands.

1. First, copy the contents of "Step 1" and apply it to your production cluster: helm repo add portworx

http://charts.portworx.io/ && helm repo update

2. Now, copy the contents of the left box in "Step 2" and apply it to your production cluster. This will install PX-Backup in the

px-backup namespace. The namespace will be created in the process.

helm install px-backup portworx/px-backup --namespace px-backup --create-namespace --version 1.2.3 -

-set persistentStorage.enabled=true,persistentStorage.storageClassName="px-backup-sc”

You can monitor the progress of the installation by issuing watch kubectl get pods -n px-backup and wait until all pods
have reached a running state. Once everything is up and running, you can port-forward to the Ul service and access the GUI.

The initial login is admin/admin. Change the password on the first login.

Configure PX-Backup

Once you are logged into the Ul for PX-Backup, there are a couple of steps to take to be ready to start protecting your

environment.

1. First, add your cloud credentials to PX-Backup so it can access both your cluster resources and the S3 bucket used to
store the backup objects. To configure your credentials, click Settings in the upper-right corner and choose Cloud

Settings.

2. Onthe Cloud Settings page, in the top section, add the IAM Identity's AWS Cloud account credentials used with the

Disaster Recovery configuration. Click + Add in the upper-right corner to enter your credentials. Click Add at the bottom

once the page is complete.

Add Cloud Account e

Please choose a cloud provider AWS /53 Compliant 0bj|
Cloud Account Name aws-cloud

Access Key KOO

Secret Key e

o 26

TECHNICAL WHITE PAPER

3. Next, click Backup Location on the Cloud Settings page. Click + Add in the lower-right corner.

Add Backup Location required

Name portworx-backups

Cloud Account aws-s3-eastl

53 Compliant Object Store

Path / Bucket portworx-backups
Encryption Key
Region us-east-1
Endpaoint s3.amazonaws.com
Disable SSL @

Storage Class Standard

4. Fill out the form. The fields with asterisks (*) are required.
a. Name: Provide a name for the backup location.
b. Select your cloud account from the drop-down list.
c. Provide a bucket name. If the bucket does not exist, it will be created with private access permissions.
d. Enter an encryption key if you want to encrypt your backups.

IMPORTANT: Be sure to save the encryption key for restores and backup validation tasks.

e. Enter the region that your production cluster is in.
f. The endpoint will be pre-populated.

g. Leave SSL enabled (do not select Disable SSL).
h. Select Standard for the storage class.

i. Click Add to finish.

If you want to keep monthly or extended retention backups in Standard-IA, create a second backup location to use with the

job definitions.

o 27

TECHNICAL WHITE PAPER

Once complete, your cloud settings should resemble this:

Cloud Settings

Cloud Accounts

a aws-s3-eastl

Backup Locations

@, awss3-pxbackup

Next, configure your backup schedules.

1. Return to the main screen and click Settings again, but select Schedule Policies. Then, on the Schedule Policies page,

click the plus (+) sign to add a new schedule policy.

Add Policy

nightlybackups

DETY

AM

Retain Incremental Count 6

Create

2. Provide a policy name and select the type of policy from the Type drop-down list. Above is an example of a nightly backup.
You can configure a full GFS Backup schedule or a schedule that meets your organization's backup requirements. It might

be necessary to create multiple schedules to implement long-term retention for compliance or regulatory reasons.

o 28

TECHNICAL WHITE PAPER

3. Next, configure any pre-backup and post-backup rules that you want to use. Example rules are available at

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/, including rules for Jenkins. If you have

jobs that might be running, add the pre- and post-backup rules for Jenkins based on the reference found here:

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/jenkins/.

4. Finally, add your production cluster to PX-Backup to begin protecting your Jenkins environment. To do this, click Add

Cluster in the upper-right corner. On the resulting screen, fill in the information as described.

Add Kubernetes Cluster

K8s Cluster Details *required

Cluster name™*

To get kubeconfig output, use “kubectl config view ——flatten ——minify” [M
command

Kubeconfig*

Kubernetes Service* EKS

Cloud Account*
SEE ST Please select

Once you complete this form with the information for your production cluster and click Submit, you will be returned to the PX-

Backup main page and your cluster will appear with a green dot next to its name.

e px-aws-prod1 . 17.85 GiB v1.204-eks-6

Showing 1-10f 1 Page

o 29

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/
https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/jenkins/

TECHNICAL WHITE PAPER

Configure Your First Backup Job

To configure your first backup job, click the name of the cluster and you will be taken to the job configuration screen.

px-aws-prod1

Applications Backups Restores Schedules

Select Namespace

Here, you can select the namespace(s) to back up from. Once a namespace has been selected (you can select all namespaces
if you want), then you can also filter by labels or resource types. However, for Jenkins, it is best to back up everything in the

namespace. So, select the Jenkins namespace.

px-aws-prod1

Applications Backups Restores Schedules

jenkins ~ Select Type ~ & Backup

jer. kins-schedule companent;jenkins L. + Instance:|enkins
1KINs-scihy -

jenkins
age... :

name:|enkins

e companentjenkins-cont... + Instance:|enkins
jenkins-casc-

jenkins
reload !

name:|enkins

|:|:-I'I'Ip::lFIEI'I'[]EI'IklI’IS cont... t Instance:|enkins
jenkins RoleBinding
name:|jenkins

|:|:-I'I'Ip::lFIEI'I'[]EI'IklI’IS cont... t Instance:|enkins
jenkins RoleBinding
name:|enkins

s-schedule-

Instance:|enkins
jenkins jenkins StatefulSet
name:|enkins

kube-root-ca.crt jenkins ConfigMap

jenkins ConfigMap

Scroll down the page and you will see that all the various types of Kubernetes objects in the namespace are listed. The PVCs

and PVs are typically near the bottom. Be sure everything is selected, and then click Backup.

In the Backup window, you will provide a name, and then you can select the necessary options based on your desired backup

schedule. Once you have the desired backup settings, click Create to finish setting up the scheduled backups.

o 30

TECHNICAL WHITE PAPER

Here is a sample configuration that includes a couple of labels added to the backup for later searches and filters:

“LUSTER: px-aws-prod1

jenkins-nightly
aws-s3-pxbackup Default
You do not have a CSl Snapshot class.
On a schedule @

nightly-backup

Daily at 01:00AM (retain 7)
exec rule

Please select Please select

* app = jenkins * schedule = nightly

* type = full-namespace

jenkins
JURCES

ClusterRoleBinding
ConfigMap
PersistentVolume
PersistentVolumeClaim
Role

RoleBinding

Secret

Service

ServiceAccount
StatefulSet

Once you complete the schedule, it will start. Once complete, it will appear with a green icon on the All Backups page or on the

Backups page after clicking into the cluster from the main page.

o 31

TECHNICAL WHITE PAPER

Here you can see an example of a schedule that runs every four hours, with the most recent backup on top.

px-aws-prod1

Applications Backups Restores Schedules

May 31,2021 Jun 14, 2021

aws-s3- 14 Jun 2021,

kins-4hr-bu-8c43a... jenkins 1.01 Gig
jenkins-4hr-bu-8c43a. Sl Jenkin: L 04:49 PM

aws-s3- 14 Jun 2021,

jenkins-4hr-bu-Bca3a... SR Jenkins e 12:49 PM

o) awsd - - 14Jun 2021,
s-4hr-bu-8c43a... nkins 208
Jjenkins-4hr-bu-8c43a. Sl Jenkin: 208 MiB 08:49 AM

aws-53-

jenkins-4hr-bu-8c43a...
° pxbackup

Jenkins 24.63 MiB

In the event you want to test your backups, or restore your environment for whatever reason, simply click the three stacked

dots at the end of the line for the backup you want to use, and then select Restore.

Restore Backup "jenkins-4hr-bu-8c43adf-interval-2021-06-14-
204920"

testrestore px-aws-prod1
Default restore @ Custom restore @
~ All resources in all groups

ClusterRoleBinding v Al

ConfigMap v All
PersistentVolumeClaim < All
Role ~ All
RoleBinding v All
Secret v All

Service ~ All
ServiceAccount ~ All
StatefulSet < All

Replace existing resources

Enter a name and select your production cluster. You can also add your DR cluster and restore to it as well. If you are simply
testing your backups, select Custom restore and restore to a different namespace. If you need to recover with the backup,
use the default restore option, but click the Replace existing resources checkbox at the bottom. Once you have the restore

configured, click Restore to start.

o 32

TECHNICAL WHITE PAPER

The restore process can be monitored from the Restores tab. Once it finishes, you would find everything in place in the new
namespace, if you did a test restore. You can port forward to the Jenkins service and log in to verify that your restore was

successful.
Solution Testing and Validation

Functional Testing: Jenkins Controller HA Failover Test
The current state of Jenkins deployment is as follows:

» kubectl get pods -n jenkins -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
jenkins-8 2/2 Running @ 3d15h 10.28.24.51 ip-1@8-28-11-87.ec2.internal <none> <none>

> kﬁbectf‘get pvc -n jenkins

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
jenkins Bound pvc—2185d999-b391-46cc-ada2-bdee199c98e9 100Gi RWX px-sharedv4-sc
jenkins—plugin-dir Bound pvc—8a8d9983-ffab—4d7e-b11b-087cffb58c574 25Gi RWOD px-jenkins-sc
jenkins-plugins Bound pvc-72e65c45-f916-4f83-9c%9a-ead8fI6f443f 25Gi RWO px-jenkins-sc
sc—config-volume Bound pvc—e4777535-2513-4cdf-98c5-8ale9a3cb869 25Gi RWO px-jenkins-sc

Describe the Jenkins volume to see replica placement and status:

kubectl pxc volume inspect pvc-2f@5d999-b391-46cc-ada2-bdeel199c98e9
662147163463782487
pvc—2f05d999-b391-46cc-ada2-bdee199c98e9
jenkins
jenkins
100 GiB
EXT4
3
HIGH
May 21 18:47:45 UTC 2021
vd
up
on ip-18-28-9-164.ec2.internal
185717ed-734f-464b-af38-81a9288350cd
sharedv4_mount_options=vers=4.0
namespace=jenkins
pvc=jenkins
io_profile=auto
component=jenkins—controller
instance=jenkins
repl=3
name=jenkins
sharedvd=true

Fastpath:
Preference: false

36694
15679

Bytes Read: 247021568

Writes: 723783

Writes MS: 676970

Bytes Written: 7128477696

I0s in progress: @

Bytes used: 979 MiB
Replication Status: UP
Replica sets on nodes:

Set: ']

Node: ip-108-28-49-141.ec2.internal (Pool @)
ip-10-28-81-112.ec2. internal (Pool 0)
ip-10-28-9-164.ec2. internal (Pool @)

Pods:

- Name: jenkins-@ (113611b2-1295-4cbd-913f-33206a7b53b6)

Namespace: jenkins

Running on: ip-18-28-11-87.ec2. internal

Controlled by: jenkins (StatefulSet)

o 33

TECHNICAL WHITE PAPER

To view Jenkins jobs:

|Zaaa aescriptuion

All +

s w Name | Last Success Last Failure Last Duration Fav

@ 10 Maven-Test 9 min 42 sec - #440 3 hr 39 min - #426 17 sec 3]
@ 0 Test Pipeline 5 min 42 sec - #221 N/A 12 sec 1.2)

(,D: Twitterbot 4 days 17 hr - #38 1 day 1 hr - #271 1min 24 sec 53]

lcon: SML
Legend M Atom feed for all R Atom feed for failures M Atom feed for just latest builds

Jenkins HA Failover

In the above output, Jenkins pods are running on host: IP-10.28-11-87.ec2.internal

To cordon the cordon node:

+» kubectl cordon ip-18-28-11-87.ec2.internal

node/ip-18-28-11-87.ec2.internal cordoned

To delete a Jenkins pod to force failover:

by kubectl delete po/jenkins—@ -n jenkins

pod "jenkins-@" deleted

by kubectl get pods -n jenkins

NAME READY STATUS RESTARTS AGE
jenkins-8 @/2 Init:@8/1 @ 18s

by kubectl get pods -n jenkins
NAME READY STATUS RESTARTS AGE
jenkins-8 2/2 Running @ 2m53s

3 kubectl get pods -n jenkins -o wide
S READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
jenkins-8 2/2 Running @ 3m43s 10.28.75.180 ip-18-28-89-113.ec2.internal <none> <none=>

Note that Jenkins is now running on host: IP-10-28-89-113.ec2.internal, and that failover time is based on pod start-up
configuration. Once the pod is available again, the build history is intact and the jobs are still populated and executing on the

set schedule as defined.

O 34

TECHNICAL WHITE PAPER

[~ Build History of Jenkins

v
Jur [gun 7 Jur Jur Jur Jur
@ Maven-Test #429 @ Test Pipeline #217 @ Maven-Test #435 @ Test Pipeline #220 @ Maven-Test #441
Test Pipeline #215 @ Maven-Test #431 @ Test Pipeline #218 @ Maven-Test #437 @ Test Pipeline #221
@ Test Pipeline #216 g Maven-Test #433 @ Test Pipaline #219 @ Maven-Test #440
@ Maven-Test #432 @ Maven-Test #436 @ Maven-Test #439
@ Maven-Test #430 @ Maven-Test #434 @ Maven-Test #438
£
@
o 12 | | \ \ |
Bulld Time Since 1 Status
*] Maven-Test #441 7 min 10 sec stable =
*] Test Pipeline #221 18 min stable =
(*] Maven-Test #440 22 min stable =]
(*] Maven-Test #439 37 min stable =
(*] Test Pipeline #220 48 min stable =
] Maven-Test #438 52 min stable =
] Maven-Test #437 1 hr 7 min stable =
Q Test Pipeline #219 1 hr 18 min stable =
0 Maven-Test #436 1 hr 22 min stable =
o Maven-Test #435 1 hr 37 min stable mgu [R—

Last Success Last Failure Last Duration

Ko Maven-Test 11 min - #441 3 hr 56 min - #426 18 sec 0 %

YA - A
@ o Test Pipeline 22 min - #221 N/A 12 sec £

(m) Twitterbot 4 days 17 hr - #38 1day 1 hr - 4271 1 min 24 sec 0 %

lcon: SML
Legend 2 Atom feed for all S\ Atom feed for failures 2 Atom feed for just latest builds

Portworx Backup and Recovery Ul

The PX-Backup Ul looks like this:

Settings + Add Cluster

4 15.81 GIiB 3

Protected Protected Scheduled

All backups

® px-aws-prod1 ‘ 1581 GIB

Showing 1-10f 1

Here is the Schedule Policies interface.

35

TECHNICAL WHITE PAPER

Schedule Policies

bu-ghr-nterval Periodic Every 4 hour(s) (retain 10)

hourly-backup Periodic ery 1 hour(s) (retain 11)

Daily Daly at 01:00AM (retain 7)

t specified time on application cluster.

Showing 1-3 0f3

Cloud accounts and backup location can be found in Cloud Settings:

Cloud Settings

Cloud Accounts

Backup Locations

The catalog of previous backups is displayed in All backups.

All backups PX-Backup Dashboard

jenkins-ahr-bu-8c43a. 0 ckup Jenkins 1.14GiB 4] 08 Jun 2021, 08:48 AM
kins-ahr-bu-8c43a.. o chup Jenkins 410 MiB 4 3 08 Jun 2021, 04:4
Jenkins 410 MiB 4 3 08 Jun 2021, 12:48 AM
harbor 109 MiB 6 8 07 Jun 2021, 05:0

jenkins-nightly-bu-d.. xbackup Jenkins 4 3 07Jun 2021,

™y jenkins-ghr-bu-8c43a.. X o ckup Jenkins 410 MiB 4 3 07 Jun 2021, 08:48 PM
BACKUP: Success

jenkins-ahr-bu-8c43a.. x o chup Jenkins 549 MiB 4 3 07 jun 2021,

jenkins-4hr-bu-8c43a... x 0 ckup jenkins 145 Gig 4 3 07 Jun 2021, 12:47 PM

jenkins-4hr-bu-8c43a... x 0 ckup jenkins 111 GiB 4 3 07 Jun 2021, 08:47 AM

harbor-nig! . x 0 ckup harbor 99.44 MiB 6 8 06 Jun 2021,

Showing 1-10 of 47

Backup and Restore Jenkins

To back up the app, back up the namespace. Note that the additional drop-down and label selector allows for more fine-

grained backups.

36

TECHNICAL WHITE PAPER

Backup
To back up the application, select the Backup button and the dialog box below will appear. Provide a name, select a location,
and optionally select a schedule. You will also want to select the pre- and post-backup rules you created if needed. Then click

Create to start the backup.

Notice that all Kubernetes Objects listed will be part of the backup. The target location is in an S3 bucket.

Create Backup

px-aws-prod1

demo-jenkins-bu

aws-s3-pxbackup Default

You do not have a Sl Snapshot class.

Now (@} @ Onaschedule @

Please select Please select

% app = jenkins X purpose = demo

jenkins

ClusterRoleBinding
ConfigMap
PersistentVolume
PersistentVolumeClaim
Role

RoleBinding

Secret

Service

ServiceAccount
StatefulSet

Once the backup is started, it will appear in the backup catalog.

Applications Backups Restores Schedules

May 25,2021 Jun 8, 2021

aws-s3-

demo-jenkins-bu pxbackup Jjenkins

Clicking the three stacked dots to the right shows the status and configuration of the backup job. You can also select to

restore the backup from here.

o 37

TECHNICAL WHITE PAPER

Once the backup completes, you can view the results and see what was protected.

Note that all Kubernetes objects are listed, including the Persistent Volume and Persistent Volume Claim objects. With this

successful backup, you now have multiple options for restoring the application.

Backup Details
Restore Backup Delete Backup

™
08 Jun 2021, 10:18 AM

R

px-aws-prod1

1.02 GiB

Volumes and resources were backed up successfully

NAN

— jenkins

pvc-2f05d999-b391-46¢cc-ad4a2-bdee199c98e9
pve-9a0d9983-ffab-4d7e-b11b-07cffb59c574
pve-72e65c45-f916-4f83-9c9a-ead8fo6f443f
pvc-e47 77535-2513-4cdf-98c5-8a1 e9a3chB69

ClusterRoleBinding
ConfigMap
PersistentVolume
PersistentVolumeClaim
Role

RoleBinding

Secret

Service

ServiceAccount
StatefulSet

If the cluster were to fail, or a mistake is made in applying manifests to the cluster that corrupts or breaks the Jenkins
deployment, you can restore it to the current instance. But you can also restore to a different namespace or a different

Portworx-enabled Kubernetes cluster.

In the following example, you will restore the Jenkins application to a second cluster located in a different region. The
production cluster is in AWS US-East-1. The second cluster is in AWS US-West-1.

O 38

TECHNICAL WHITE PAPER

The US-West-1 Cluster - Portworx Status and Node List is below:

» kubectl pxc pxctl status
>> Running pxctl on ip-172-28-8-239.us-west-1.compute.internal
Status:
License:
Node ID: 890971f9-5a%e-4131-ad4a-86e70d866fc4
IP: 172.28.0.239
Local Storage Pool: @ pool
POOL I0_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION
No storage pool
Local Storage Devices: @ device
Device Path Media Type Size Last-Scan
No storage device

Cache Devices:

* No cache devices

Summary

Cluster ID: px-jenkins—dri-61192aae-444d-4782-b93b-dc5f7f6345f1

Cluster UUID: 22189c9a-5¢f6-4951-8d1c-66debbd1e@78

Scheduler: kubernetes

Nodes: 2 node(s) with storage (2 online), 3 node(s) without storage (3 online)

IP ID ScheduleriNodeName StorageNode
Status StorageStatus Version Kernel

Global Storage Pool

Total Used : 20 GiB

Total Capacity : 494 GiB
» kubectl get nodes
NAME STATUS ROLES VERSION
ip-172-28-8-239. us-west-1. compute. internal Ready <none> v1.19. 6-eks-49a6c@
ip-172-28-25-237.us—west-1.compute. internal Ready <none> v1.19.6-eks—-4%9abch®
ip-172-28-36-13.us-west-1. compute. internal Ready <none> v1.19.6-eks—-49abc@
ip-172-28-4-217.us-west-1. compute. internal Ready <none> v1.19.6-eks—-49a6c@
ip-172-28-62-78.us-west-1.compute. internal Ready <none> v1.19.6-eks—-49abcd

The current namespaces in US-West-1 Cluster:

+y kubectl get namespaces
NAME STATUS
default Active
kube-node-lease Active
kube-public Active
kube-system Active

To add the US-West-1 Cluster to PX-Backup:

e px-aws-prodi

e px-jenkins-dri

PX-Backup can provide backup and recovery services to all connected clusters.

Restore Jenkins Backup
From the Ul, click All Backups >>. This will present the backup catalog. Here, select the last backup and configure a restore to

the remote cluster located in the US-West-1 region.

o 39

TECHNICAL WHITE PAPER

In the restore dialog box, provide a name for the restore job. In the destination cluster, both the source and remote clusters
are available. The remote cluster is selected and Custom Restore is selected to place the restored copy of Jenkins into a

different namespace. To proceed, ensure all items are selected and click the Restore button.

You can monitor the progress on the resulting page:

Restore Backup “demo-jenkins-bu”

restore-to-west px-jenkins-dr1
@ Default restore Custom restore (@)
+ Source Name) Destination Nan

¥ Jenkins jenkins-restored

= All resources in all groups

ClusterRoleBinding All
ConfigMap « All
PersistentVolumeClaim v All
Role v All
RoleBinding « All
Secret v All
Service v All
ServiceAccount v All
StatefulSet v All

Replace existing resources

The backup was successfully restored to the cluster in the US-West-1 region, as seen below.

by kubectl get applicationrestore -A
MAMESPACE NAME
jenkins-restored restore-to—west-b64elcc

px-jenkins-dr1

Applications Backups Restores Schedules

May 25,2021 Jun B, 2021

08 Jun 2021, 05:07

restore-1o-west demo-jenkins-bu 1.11GIB -

Showing 1-1 of 1 Page 1

o 40

TECHNICAL WHITE PAPER

The output for kubectl get all -n jenkins-restore looks like this:

3y kubectl get all -n jenkins-restored
NAME READY STATUS RESTARTS AGE
pod/jenkins-8 2/2 Running @ 4m39s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/jenkins ClusterIP 10.100.241.252 <none> 8080/TCP 4mdls
service/jenkins-agent ClusterIP 10.100.132.21 <none> 50000/TCP 4mdls

NAME READY AGE
statefulset.apps/jenkins 1/1 4madls
¥y kubectl cluster-info
is running at http
is runnmg at https://7DEF44B107F]

The application is running in the namespace “jenkins-restored” and we can see that the cluster is in US-West-1.

Validate DR Replication Failover Preparedness

Change to the DR Cluster and verify the DR site is usable:

storkctl suspend migrationschedules jenkins-async-dr —-n migrations
MlgratlonSchedule jenkins-async-dr suspended successfully
} [px-jenkins—eks/migrations Lo] P master

kubectx px-jenkins—drl
Switched to context "px-jenkins-drl".
I ~ px-jenkins (s/migrations > ® I master !2 75

kubectl get all -n jenkins
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/jenkins ClusterIP 10.100.27.49 <none> 8ese/TCP 6m20s
service/jenkins-agent ClusterIP 10.100.23.241 <none> Seeea/TCP 6m2@s

NAME READY AGE

statefulset.apps/jenkins @/@ 6m20s

e ~ px-jenki ks/migrations > ®
kubectl scale statefulset/jenkins -n jenkins —-replicas=1

statefulset.apps/jenkins scaled

r— & px-jenkins-eks/migrations » @}/
kubectL get pods -n jenkins

NAME READY STATUS RESTARTS AGE

jenkins-@ @/2 Init:0/1 @ 11s

]
STATUS RESTARTS AGE
jenkins-@ 2/2 Running @ 95s
P— & - px-jenkins-eks /migrations > ® }¥ m,
kubectl port-forward svc/jenkins -n jenkins 808@
Forwardlng from 127 8. B 1 8080 — SEBB

After suspending the DR migration schedule and scaling up the StatefulSet controller in the DR Cluster, we can then port-
forward to the Jenkins service and access the application running in the DR Cluster using kubectl port-forward -n

jenkins svc/jenkins 8080.

Next, open your browser and navigate to http://localhost:8080. Your credentials are the same as the production deployment.

Once logged in, you can verify that everything is in place and ready in case of a disaster recovery event.

o 41

http://localhost:8080/

TECHNICAL WHITE PAPER

localhost: = £

B . > = = = B Reading List

‘5 Jenkins Q, search A @ 2 JenkinsAdmin 3]log out

Dashboard

[#add description
‘= New Item

& People))
1 Last Success Last Failure Last Duration
== Build History @ A, Maven- 14 min - 1 day 10 hr - 20 sec @ A,
AE O Test #562 #426 =
%’f Manage Jenkins
av
< Test 40 min - A
: ® & = NA 14 sec 0 W
& My Views v Pipeline #281 =
. 6 days 0 hr - 2 days 7 hr - _ \
= Lockable Resources ® I 1 min 24 sec >
@ Twitterbot #38 #271) =
[0 New View \con:
SML Legend M Atom feed for all A Atom feed for failures
Build Queue A R Atom feed for just latest builds
Mo builds in the queue
Build Executor Status A
REST API Jenkins 2.293

You can see that the jobs are there and ready to run. When you check the build history, you'll see something like the

screenshot below:

o 42

TECHNICAL WHITE PAPER

"~ Build History of Jenkins

Timaline & SIMILE

Build Time Since | Status

Maven-Test #563 51 sec ? —
g Maven-Test #562 15 min stable =
g Maven-Test #561 30 min stable =
.J Test Pipeline #281 41 min stable E
g Maven-Test 4560 45 min stable =
v Maven-Test #559 1 hr O min stable =
@ Test Pipeline #280 1 hr 11 min stable =
.J Maven-Test #558 1 hr 15 min stable E

Not only is the job history there, but the Maven-Test has started on the DR Cluster.

Once done testing the DR site, scale the StatefulSet controller back to 0 and re-enable the migration schedule on the

Production cluster:

& B
kubectl scale statefulset/jenkins -n jenkins —-replica
statefulset.apps/jenkins scaled

kubectx px-aws-prod
Switched to context "px-aws—prod".
[LN !
storkctl resume migrationschedules jenkins-async—dr —n migrations
MigrationSchedule jenkins-async-dr resumed successfully
& ®F ma

You can then verify that the DR replication has resumed:

NAME AGE
jenkins-async-dr-interval-2021-06-89-200912 17m

jenkins-async-dr-interval-2021-06-89-202546 38s
[

® P master 12

O 43

TECHNICAL WHITE PAPER

Conclusion

Portworx by Pure Storage is the industry-leading container storage solution. By dynamically providing persistent storage to
containers, Portworx enables your company to run your development operations at any scale. Portworx was specifically built
from the ground up for containers. Like AWS EKS, which allows you to adapt your compute resources as your needs change,

Portworx allows you to "right-size" your storage. No more guesswork or wasted capacity!

Portworx also enables HA across availability zones without the need to deploy multiple Jenkins controllers in an active-passive
configuration. Portworx enables you to realize a zero RPO and a recovery time objective (RTO) measured in seconds rather
than minutes or longer. By leveraging Portworx for your Jenkins deployments, you can start small and grow as your needs
change. Portworx offers unique capabilities, including automated provisioning, dynamic volume expansion, storage pool
expansions, data protection, and disaster recovery, and it works alongside EKS to ensure that your applications are always
performant, highly available, and protected with the same level of enterprise-class data services as more traditional

infrastructures.

Through testing of each component, we have shown that Portworx Enterprise can easily provide the enterprise-grade data
services needed to run reliable production systems in the AWS Cloud ecosystem at a large scale. Solving for speed, density,
and scale, Portworx not only enables efficient provisioning, cross-AZ high availability, and data that is as mobile as the
containers it fuels. Portworx also provides a complete disaster recovery and business continuity solution. Simply add the
Disaster Recovery option and enable Metro-DR for zero RPO, or Async-DR for longer distances with a low RPO of 10 minutes. If

your business just can’t be down, Portworx Enterprise paired with AWS Elastic Kubernetes Service are the tools for the job.

Complete the solution with PX Backup to provide Kubernetes-aware and application-consistent backups. PX-Backup enables
enterprises to maintain their data-protection SLAs in this new world of modern applications. Capable of backing up everything
from a single container app to distributed systems like Elastic, Cassandra, Kafka, and others, PX-Backup can even back up the
entire cluster state to protect your business against the worst of days. Portworx Backup completes a solution delivering a new
level of data protection, recoverability, and data mobility for containerized workloads.

Ultimately, AWS EKS and Portworx Enterprise provide a robust and reliable solution for Jenkins CI/CD pipelines. By ensuring
that the data is performant, protected, and always available, Portworx Kubernetes Data Services enhances operations in the
cloud to a level that no other currently available product can reach. With Portworx Enterprise and AWS EKS, your business can

now build software in the cloud without compromise.

o 44

TECHNICAL WHITE PAPER

Appendix: Additional Testing

Volume Encryption: Cluster-Wide, Test 2.12

> kubectl -n kube-system create secret generic px-vol-encryption \

--from-literal=cluster-wide-secret-key=I10v3PortwOrX
secret/px-vol-encryption created
> pxctl secrets set-cluster-key --secret cluster-wide-secret-key
>> Running pxctl on ip-10-28-72-236.ec2.internal
Successfully set cluster secret key
> cat << EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:

secure: "true”

repl: "3"
EOF
storageclass.storage.k8s.io/px-secure-sc created
> cat << EOF | kubectl apply -f -
kind: PersistentVolumeClaim
apiVersion: vi
metadata:

name: secure-pvc
spec:

storageClassName: px-secure-sc

accesslodes:

- ReadWiriteOnce

resources:

requests:
storage: 2Gi

EOF
persistentvolumeclaim/secure-pvc created
> pxctl v 1

{‘:,) 45

TECHNICAL WHITE PAPER

y pxctl v 1
>> Running pxctl on ip-10-28-72-236.ec2.internal
D NAME SIZE HA ENCRYPTED PROXY-VOLUME I0_PRIORITYS
TATUS SNAP-ENABLED
941424258947850710 pvc-008381fd-5ade-41b3-9038-d7a67d989%a3b 5 GiB no no HIGH
L8 1L no
588388054488095957 pvc-Bad445f@e-b9e8-49d4-95fb-669b8b6Ge158 100 GiB no no HIGH

662147163463782487 'puc—zfasg;99—b391-4scc—a4a2—bdee199cgse9 160 GiB no no HIGH
713244019404977633 pvc-3b238308-695b—433a-090-8399584edbd 15 GiB no no HIGH
707533177257556091 ﬁQc-asba2:3b-dd15-4134-351?-3122csaab3b1 64 GiB no no HIGH
650554536075277967 pvc-51e16¢22-a543-487c-ad24-7fce7f01e25 20 GiB no no HIGH
01816532500425006 pve-beTceBed-Tcab—44df-8401-41416665b01F 2 GiB no HIGH
515827332276657177 pvc—?lﬁGEZB8—94bh—48c3—9:48—4:2?149ef493 10 GiB no HIGH
258764508894037386 pvc-72e65045-f916-483-0c0a-ead8 o61443f 25 GiB no HIGH
080061513420219150 puc-86cd7497-3dd6-4808-ad70-bedee23730b5 1 GiB no HIGH

Volume Encryption: Volume Granular Encryption, Test 2.13

> kubectl -n jenkins-secure create secret generic jenkins-encryption-key --from-literal=secure-
pvc=SuperSecur3Key
secret/ jenkins-encryption-key created
> cat << EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:
secure: "true”
repl: "3"
EOF
storageclass.storage.k8s.io/px-secure-sc created
> cat << EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: pPx-secure-rwx-sc
provisioner: kubernetes.io/portworx-volume
parameters:
sharedv4: "true”
secure: "true”
repl: "3"
EOF
storageclass.storage.k8s.io/px-secure-rwx-sc created
> cat << EOF | kubectl apply -f -
kind: PersistentVolumeClaim

apiVersion: vl

“:,’ 46

TECHNICAL WHITE PAPER

metadata:
name: jenkins-data-encrypted
namespace: jenkins
annotations:
px/secret-name: jenkins-encryption-key
px/secret-namespace: jenkins-encrypted
px/secret-key: secure-pvc
spec:
storageClassName: px-secure-rwx-sc
accesslodes:
- ReadWiriteOnce
resources:
requests:
storage: 50Gi
EOF

persistentvolumeclaim/jenkins-data-encrypted created

Deploy Jenkins Using Encryption

> kubectl apply -f yamls/Jenkins-controller-encrypted.yaml
kubectl get po -n jenkins -w
statefulsets.apps/jenkins-encrypted created

service/jenkins-encrypted created

NAME READY STATUS RESTARTS AGE
jenkins-0 2/2 Running 0 32m
jenkins-encrypted-0 e/2 ContainerCreating 0 1s
jenkins-encrypted-0 2/2 Running 0 4s

> kubectl delete secret jenkins-encryption-key -n jenkins

secret "jenkins-encryption-key" deleted

> NODE="kubectl get pods -1 app=jenkins-encrypt -n jenkins -o jsonpath='{.items[0].spec.nodeName}""
kubectl cordon $NODE

kubectl delete pod jenkins-encrypted-0 -n jenkins

kubectl uncordon $NODE

node/ip-10-28-67-235.ec2.internal cordoned

pod "jenkins-encrypted-0" deleted

node/ip-10-28-67-235.ec2.internal uncordoned

> kubectl describe po jenkins-encrypted-0 -n Jenkins

Name : jenkins-encrypted-0
Namespace: jenkins
Priority: 0

{‘:,' 47

TECHNICAL WHITE PAPER

name=jenkins-encrypted
statefulset.kubernetes.io/pod-name=jenkins-encrypted-0
Annotations: kubernetes.io/psp: eks.privileged

Status: Error
IP: 10.28.75.180
IPs:

IP: 10.28.75.180

Controlled By: StatefulSet/jenkins-encrypted

Init Containers:

init:
Container ID: docker://828822c2251e78f69a28c1f1563b8449616Fd02d1lcc2647c0c8b974945b1fFac
Image: jenkins/jenkins:2.293
Image ID: docker-
pullable://jenkins/jenkinsasha256:7eafcc2583688b6dd6d8f614bbfeb5a67c0d2f8b2ee0563364d5b2F310a74c021
Port: <none>
Host Port: <none>
Command:
sh
/var/jenkins_config/apply_config.sh
State: Terminated
Reason: Error
Exit Code: 1
Started: Tue, 08 Jun 2021 09:54:36 -0400
Finished: Tue, 08 Jun 2021 09:54:40 -0400
Ready: True
Restart Count: O
Limits:
cpu: 3
memory: 8Gi
Requests:
cpu: 500m
memory : 512Mi

Environment: <none>

Mounts:
/usr/share/jenkins/ref/plugins from plugins (rw)
/var/jenkins_config from jenkins-config (rw)
/var/jenkins_home from jenkins-home (rw)
/var/jenkins_plugins from plugin-dir (rw)

/var/run/secrets/kubernetes.io/serviceaccount from jenkins-token-zxhfd (ro)

Containers:
jenkins:

Container ID: docker://35724d04cceaba8b9laalbacbc3a861d708779ab73aea95dac4224dfbeelc055

Image: jenkins/jenkins:2.293-jdk11l

Image ID: docker-
pullable://jenkins/jenkinsasha256:439516c825946e925200b65049a3bfc500df8d599057beSbfce08213c837170a

Ports: 8082/TCP, 50010/TCP

Host Ports: 0/TCP, O/TCP

Args:

O 48

TECHNICAL WHITE PAPER

--httpPort=8080

State: CrashLoopBackoff
Started: Tue, 08 Jun 2021 09:54:51 -0400
Ready: True

Restart Count: 4

Limits:
cpu: 2
memory: 4Gi
Requests:
cpu: 500m

memory : 512Mi
Liveness: http-get http://:8082/login delay=0s timeout=5s period=10s #success=1 #failure=5
Readiness: http-get http://:8082/1login delay=0s timeout=5s period=10s #success=1 #failure=3

Startup: http-get http://:8082/1ogin delay=0s timeout=5s period=10s #success=1 #failure=12
Environment:

POD_NAME : jenkins-encrypted-0 (vi:metadata.name)

JAVA_OPTS: -Dcasc.reload.token=$(POD_NAME)

JENKINS_OPTS:
JENKINS_SLAVE_AGENT_PORT: 50010

JENKINS_UC: https://updates.jenkins.io
JENKINS_UC_DOWNLOAD: https://ftp-nyc.osuosl.org/pub/jenkins
CASC_JENKINS_CONFIG: /var/jenkins_home/casc_configs

Mounts:

/run/secrets/chart-admin-password from admin-secret (ro,path="jenkins-admin-password")
/run/secrets/chart-admin-username from admin-secret (ro,path="jenkins-admin-user™)
/usr/share/jenkins/ref/plugins/ from plugin-dir (rw)
/var/jenkins_config from jenkins-config (ro)
/var/jenkins_home from jenkins-home (rw)
/var/jenkins_home/casc_configs from sc-config-volume (rw)
/var/run/secrets/kubernetes.io/serviceaccount from jenkins-token-zxhfd (ro)

config-reload:

Container ID: docker://5e5c6c988e6c325123766d380F fa2ffab3d5db8fd2a6652b34179b0359575520

Image: kiwigrid/k8s-sidecar:1.12.0
Image ID: docker-pullable://kiwigrid/k8s-
sidecarasha256:89739be9f£3894910b29fa505b8726372c843306b3786b8e769631d8146b4035

Port: <none>
Host Port: <none>
State: Failed

Started: Tue, 08 Jun 2021 09:54:54 -0400
Ready: False
Restart Count: O
Limits:

cpu: 500m

memory: 512Mi
Requests:

cpu: 50m

memory: 256Mi

Environment:

O 49

TECHNICAL WHITE PAPER

POD_NAME : jenkins-encrypted-0 (vi:metadata.name)

LABEL: jenkins-config

FOLDER: /var/jenkins_home/casc_configs

NAMESPACE : jenkins

REQ_URL: http://localhost:8082/reload-configuration-as-code/?casc-reload-
token=$(POD_NAME)

REQ_METHOD: POST

REQ_RETRY_CONNECT: 10

Mounts:

/var/jenkins_home from jenkins-home (rw)
/var/jenkins_home/casc_configs from sc-config-volume (rw)

/var/run/secrets/kubernetes.io/serviceaccount from jenkins-token-zxhfd (ro)

Conditions:
Tupe Status
Initialized False
Ready False
ContainersReady False
PodScheduled True
Volumes:
plugins:
Tupe: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)

ClaimName: jenkins-plugins
ReadOnly: false
jenkins-config:
Type: ConfigMap (a volume populated by a ConfigMap)
Name : jenkins
Optional: false
plugin-dir:
Tupe: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: jenkins-plugin-dir
ReadOnly: false
jenkins-home:
Tupe: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: jenkins
ReadOnly: false
sc-config-volume:
Tupe: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same namespace)
ClaimName: sc-config-volume
ReadOnly: false

admin-secret:

Tupe: Secret (a volume populated by a Secret)
SecretName: jenkins
Optional: false

jenkins-token-zxhfd:
Tupe: Secret (a volume populated by a Secret)
SecretName: jenkins-token-zxhfd
Optional: false

QoS Class: Burstable

{‘:,) 50

TECHNICAL WHITE PAPER

Node-Selectors: <none=>
Tolerations: node. kubernetes.io/not-ready:NoExecute op=Exists for 300s

node. kubernetes.io/unreachable:NoExecute op=Exists for 300s

Events:
Tupe Reason Age From Message
Normal Scheduled 34m stork Successfully assigned jenkins/jenkins-encrypted-0 to ip-10-

28-67-235.ec2.internal

Warning FailedMount 34m kubelet MountVolume.SetUp failed for volume "default-token-czw4j"
failed to sync secret cache: timed out waiting for the condition. - Could not mount volume after
Secret was deleted
> kubectl delete -f jenkins-encrypted.yaml
kubectl delete pvc jenkins-encrypted -n jenkins
statefulset.apps "jenkins-encrypted” deleted

persistentvolumeclaim "jenkins-encrypted” deleted

PostgreSQL RWO
Tests: 2.01 through 2.03 Output

> kubectl create ns postgres

namespace/postgres created

> kubectl apply -f yamls/postgres-sc.yaml
storageclass.storage.k8s.io/px-postgres-sc created
> kubectl apply -f yamls/postgres-pvc.yaml
persistentvolumeclaim/postgres-data created

> kubectl get pvc -n postgres

NAME STATUS VOLUME CAPACITY ACCESS MODES
STORAGECLASS AGE
postgres-data Bound pvc-e27f59af-a275-476¢c-90Tf0-3e0d0c681d15 261 RWO px-

postgres-sc 13s

> kubectl label nodes --all node-role.kubernetes.io/worker=true
node/ip-10-28-0-91.ec2.internal labeled
node/ip-10-28-43-50.ec2.internal labeled
node/ip-10-28-60-118.ec2.internal labeled
node/ip-10-28-67-235.ec2.internal labeled
node/ip-10-28-72-236.ec2.internal labeled
node/ip-10-28-8-123.ec2.internal labeled

> # this command assumes your nodes are labled correctly
NODE="kubectl get nodes -1 node-role.kubernetes.io/worker=true -o
jsonpath="{.items[0] .metadata.name} "

> cat << EOF | kubectl apply -f -

apiVersion: portworx.io/vibeta?2

kind: VolumePlacementStrateqy

O 51

TECHNICAL WHITE PAPER

spec:
replicaAffinity:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- "$NODE"
EOF

volumeplacementstrateqgy.portworx.io/node-specific created
> cat << EOF | kubectl apply -f -
kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:

name: px-node-specific-sc

labels:

app: postgres

provisioner: kubernetes.io/portworx-volume
parameters:

repl: "1"

placement_strategy: "node-specific”
allowVolumeExpansion: true
EOF
storageclass.storage.k8s.io/px-node-specific-sc created
> cat << EOF | kubectl apply -f -
kind: PersistentVolumeClaim
apiVersion: vi
metadata:

name: vps-test
spec:

storageClassName: px-node-specific-sc

accesslodes:

- ReadWiriteOnce

resources:

requests:
storage: 20Gi

EOF
persistentvolumeclaim/vps-test created
> # check that the PVC is bound before running the inspect command
kubectl get pvc vps-test
once it's bound you can inspect it
PVC="kubectl get pvc vps-test --no-headers | awk '{print $3}'"
pxctl volume inspect $PVC
and confirm that the IP of the Node in the replica set matches the node's IP
kubectl get node $NODE -o wide
zsh: correct 'pxctl' to 'tpctl' [nyael? n
NAME STATUS VVOLUME CAPACITY ACCESS MODES STORAGECLASS AGE
vps-test Pending px-node-specific-sc 21s

zsh: command not found: pxctl

{‘:,' 52

TECHNICAL WHITE PAPER

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP
0S-IMAGE KERNEL -VERSION CONTAINER-RUNTIME

ip-10-28-0-91.ec2.internal Ready worker 28d vl1.19.6-eks-49a6c0 10.28.0.91 3.90.241.207
Amazon Linux 2 5.4.110-54.182.amzn2.x86_64 docker://19.3.13

> kubectl apply -f yamls/postgres-app.yaml

deployment .apps/postgres created

service/postgres created

> kubectl get po -n postgres

NAME READY STATUS RESTARTS AGE

postgres-ddf7d7dfc-dkgww 1/1 Running 0 15s

> POSTGRES_POD="kubectl get po -n postgres -1 app=postgres -o jsonpath='{.items[0].metadata.name}""
kubectl exec -it -n postgres $POSTGRES_POD -- psql -c "create database pxdemo;”

CREATE DATABASE

> kubectl exec -it -n postgres $POSTGRES_POD -- pgbench -i -s 50 pxdemo

NOTICE: +table "pgbench_history” does not exist, skipping

NOTICE: +table "pgbench_tellers"” does not exist, skipping

NOTICE: +table "pgbench_accounts™ does not exist, skipping

NOTICE: +table "pgbench_branches” does not exist, skipping

creating tables...

100000 of 5000000 tuples (2%) done (elapsed 0.08 s, remaining 3.84 s)

200000 of 5000000 tuples (4%) done (elapsed 0.17 s, remaining 4.03 s)

300000 of 5000000 tuples (6%) done (elapsed 0.28 s, remaining 4.37 s)

400000 of 5000000 tuples (8%) done (elapsed 0.35 s, remaining 4.06 s)

500000 of 5000000 tuples (10%) done (elapsed 0.43 s, remaining 3.89 s)

600000 of 5000000 tuples (12%) done (elapsed 0.50 s, remaining 3.65 s)

700000 of 5000000 tuples (14%) done (elapsed 0.57 s, remaining 3.50 s)

800000 of 5000000 tuples (16%) done (elapsed 0.64 s, remaining 3.37 s)

900000 of 5000000 tuples (18%) done (elapsed 0.73 s, remaining 3.32 s)

1000000 of 5000000 tuples (20%) done (elapsed 0.82 s, remaining 3.28 s)
1100000 of 5000000 tuples (22%) done (elapsed 0.90 s, remaining 3.18 s)
1200000 of 5000000 tuples (24%) done (elapsed 0.97 s, remaining 3.08 s)
1300000 of 5000000 tuples (26%) done (elapsed 1.06 s, remaining 3.02 s)
1400000 of 5000000 tuples (28%) done (elapsed 1.15 s, remaining 2.96 s)
1500000 of 5000000 tuples (30%) done (elapsed 1.25 s, remaining 2.92 s)
1600000 of 5000000 tuples (32%) done (elapsed 1.36 s, remaining 2.90 s)
1700000 of 5000000 tuples (34%) done (elapsed 1.45 s, remaining 2.82 s)
1800000 of 5000000 tuples (36%) done (elapsed 1.54 s, remaining 2.74 s)
1900000 of 5000000 tuples (38%) done (elapsed 1.63 s, remaining 2.66 s)
2000000 of 5000000 tuples (40%) done (elapsed 1.70 s, remaining 2.55 s)
2100000 of 5000000 tuples (42%) done (elapsed 1.77 s, remaining 2.45 s)
2200000 of 5000000 tuples (44%) done (elapsed 1.85 s, remaining 2.36 s)
2300000 of 5000000 tuples (46%) done (elapsed 1.92 s, remaining 2.26 s)
2400000 of 5000000 tuples (48%) done (elapsed 2.00 s, remaining 2.17 s)
2500000 of 5000000 tuples (50%) done (elapsed 2.08 s, remaining 2.08 s)
2600000 of 5000000 tuples (52%) done (elapsed 2.14 s, remaining 1.98 s)
2700000 of 5000000 tuples (54%) done (elapsed 2.22 s, remaining 1.89 s)
2800000 of 5000000 tuples (56%) done (elapsed 2.29 s, remaining 1.80 s)
2900000 of 5000000 tuples (58%) done (elapsed 2.36 s, remaining 1.71 s)

{‘:,) 53

TECHNICAL WHITE PAPER

3000000 of 5000000 tuples (60%) done (elapsed 2.43 s, remaining 1.62 s)
3100000 of 5000000 tuples (62%) done (elapsed 2.51 s, remaining 1.54 s)
3200000 of 5000000 tuples (64%) done (elapsed 2.60 s, remaining 1.46 s)
3300000 of 5000000 tuples (66%) done (elapsed 2.69 s, remaining 1.38 s)
3400000 of 5000000 tuples (68%) done (elapsed 2.77 s, remaining 1.31 s)
3500000 of 5000000 tuples (70%) done (elapsed 2.87 s, remaining 1.23 s)
3600000 of 5000000 tuples (72%) done (elapsed 2.96 s, remaining 1.15 s)
3700000 of 5000000 tuples (74%) done (elapsed 3.05 s, remaining 1.07 s)
3800000 of 5000000 tuples (76%) done (elapsed 3.14 s, remaining 0.99 s)
3900000 of 5000000 tuples (78%) done (elapsed 3.22 s, remaining 0.91 s)
4000000 of 5000000 tuples (80%) done (elapsed 3.35 s, remaining 0.84 s)
4100000 of 5000000 tuples (82%) done (elapsed 3.45 s, remaining 0.76 s)
4200000 of 5000000 tuples (84%) done (elapsed 3.54 s, remaining 0.67 s)
4300000 of 5000000 tuples (86%) done (elapsed 3.65 s, remaining 0.59 s)
4400000 of 5000000 tuples (88%) done (elapsed 3.72 s, remaining 0.51 s)
4500000 of 5000000 tuples (90%) done (elapsed 3.80 s, remaining 0.42 s)
4600000 of 5000000 tuples (92%) done (elapsed 3.87 s, remaining 0.34 s)
4700000 of 5000000 tuples (94%) done (elapsed 3.96 s, remaining 0.25 s)
4800000 of 5000000 tuples (96%) done (elapsed 4.05 s, remaining 0.17 s)
4900000 of 5000000 tuples (98%) done (elapsed 4.13 s, remaining 0.08 s)

5000000 of 5000000 tuples (100%) done (elapsed 4.21 s, remaining 0.00 s)
vacuum. . .
set primary keys...
done.
> kubectl exec -it -n postgres $POSTGRES_POD -- df -m | grep postgres
/dev/pxd/pxd559963210498322444 1952 805 1030 44% /var/lib/postgresql/data
> kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c "select count(*) from
pagbench_accounts™
count
5000000
(1 row)

Failover Testing: 2.04, Postgres

> NODE="kubectl get pods -1 app=postgres -n postgres -o jsonpath='{.items[0].spec.nodeName}'"
kubectl cordon $NODE

kubectl delete pod $POSTGRES_POD -n postgres

node/ip-10-28-8-123.ec2.internal cordoned

pod "postgres-ddf7d7dfc-dkgww” deleted

> kubectl get pod -o wide -n postgres

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

postgres-ddf7d7dfc-xgzd8 1/1 Running O 23s 10.28.65.138 ip-10-28-67-
235.ec2.internal <none> <none>

> NODE="kubectl get pods -1 app=postgres -n postgres -o jsonpath='{.items[0].spec.nodeName} "

{‘:,) 54

TECHNICAL WHITE PAPER

kubectl cordon $NODE

kubectl delete pod $POSTGRES_POD -n postgres
node/ip-10-28-8-123.ec2.internal cordoned
pod "postgres-ddf7d7dfc-dkgww” deleted

> kubectl get pod -o wide -n postgres

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

postgres-ddf7d7dfc-xgzd8 1/1 Running O 23s 10.28.65.138 ip-10-28-67-
235.ec2.internal <none> <none>

> POSTGRES_POD="kubectl get po -n postgres -1 app=postgres -o jsonpath='{.items[0].metadata.name}""
kubectl exec -it -n postgres $POSTGRES_POD -- df -m | grep postgres
/dev/pxd/pxd559963210498322444 1952 821 1014 45% /var/lib/postgresql/data
> kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c¢ "select count(*) from
pgbench_accounts™
count
5000000
(1 row)
> kubectl uncordon $NODE
node/ip-10-28-8-123.ec2.internal uncordoned

Read Write Many: Nginix Deployment, 2.05 and 2.06

> kubectl apply -f yamls/nginx-sc.yaml
storageclass.storage.k8s.io/px-shared-sc created
> kubectl create ns nginx

kubectl apply -f yamls/nginx-pvc.yaml
namespace/nginx created
persistentvolumeclaim/nginx-pvc created

> kubectl apply -f yamls/nginx-app.yaml
deployment.apps/nginx created

service/nginx-svc created

> kubectl get po -n nginx

NAME READY STATUS RESTARTS AGE
nginx-744b4745dc-wbpgz 1/1 Running 0 13s
> kubectl get svc -n nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE

nginx-svc LoadBalancer 172.20.36.161 ac6065bf92048455ba37f6e9cdlb316b-1972197306.us-east -
1.elb.amazonaws.com 80:30096/TCP 26s

> cat << EOF | cat >> index.html

<html>

<h1>Hello World<\hi>

</html>

{‘:,) 55

TECHNICAL WHITE PAPER

EOF

POD="kubectl get pods -n nginx --no-headers | head -n 1 | awk '{print $1}'"
kubectl cp -n nginx index.html $POD:/usr/share/nginx/html/index.html

> kubectl scale deploy nginx -n nginx --replicas=3

deployment.apps/nginx scaled

> kubectl get po -n nginx -owide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

nginx-744b4745dc-8wg7w 1/1 Running 0 17s 10.28.37.164 ip-10-28-43-
50.ec2.internal <none> <none>

nginx-744b4745dc-g2c6w 1/1 Running 0 17s 10.28.79.33 ip-10-28-72-
236.ec2.internal <none> <none>

nginx-744b4745dc-wbpgz 1/1 Running 0 2mis 10.28.20.149 ip-10-28-8-
123.ec2.internal <none> <none>

Volume Snapshot: Test 2.14

PostgreSQL used for testing:

> cat << EOF | kubectl apply -f -
apiVersion: volumesnapshot.external-storage.k8s.io/vl
kind: VolumeSnapshot
metadata:
name: px-postgres-snapshot
namespace: postgres
spec:
persistentVolumeClaimName: postgres-data
EOF
volumesnapshot.volumesnapshot.external-storage.k8s.io/px-postgres-snapshot created

> kubectl describe volumesnapshot px-postgres-snapshot -n postgres

Name : px-postgres-snapshot
Namespace: postgres
Labels: SnapshotMetadata-PVName=pvc-e27f59af-a275-476c-90f0-3e0d0c681d15

SnapshotMetadata-Timestamp=1622737975553645452
Annotations: <none>

API Version: volumesnapshot.external-storage.k8s.io/vil

Kind: VolumeSnapshot

Metadata:
Creation Timestamp: 2021-06-03T16:32:55Z
Generation: 3

Managed Fields:
API Version: volumesnapshot.external-storage.k8s.io/vil
Time: 2021-06-03T16:32:552
API Version: volumesnapshot.external-storage.k8s.io/vil

Manager: kubectl-client-side-apply

{‘:,) 56

TECHNICAL WHITE PAPER

Operation: Update
Time: 2021-06-03T16:32:55Z
Resource Version: 16829061
Self Link: /apis/volumesnapshot.external-

storage.k8s.io/vl/namespaces/postgres/volumesnapshots/px-postgres-snapshot

UID: c3dbd16b-3bfe-422e-9aa5-482183287606
Spec:
Persistent Volume Claim Name: postgres-data
Snapshot Data Name: k8s-volume-snapshot-9790aald-bf7e-410a-8306-c1915723ad99
Status:
Conditions:
Last Transition Time: 2021-06-03T16:32:56Z
Message: Snapshot created successfully and it is ready
Reason:
Status: True
Tupe: Ready
Creation Timestamp: <nil>
Events: <none>

Volume Snapshot Restore: Test 2.15

To test the snapshot restore, drop the px-demo database and show you can recover it:

> POSTGRES_POD="kubectl get po -n postgres -1 app=postgres -o jsonpath='{.items[0].metadata.name}""
kubectl exec -it -n postgres $POSTGRES_POD -- psql -c "drop database pxdemo;"
DROP DATABASE
> kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c¢ "select count(*) from
pgbench_accounts™
psqgl: FATAL: database "pxdemo"” does not exist
command terminated with exit code 2
> cat << EOF | kubectl apply -f -
apiVersion: stork.libopenstorage.org/vialphal
kind: VolumeSnapshotRestore
metadata:
name: postgres-snap-restore
namespace: postgres
spec:
sourceName: px-postgres-snapshot
sourceNamespace: postgres
EOF
kubectl get po -n postgres -w

volumesnapshotrestore.stork.libopenstorage.org/postgres-snap-restore created

{‘:,) 57

TECHNICAL WHITE PAPER

NAME READY STATUS RESTARTS AGE
postgres-ddf7d7dfc-j28cd 0/1 Pending O 1s
postgres-ddf7d7dfc-j28cd 0/1 Terminating 0 14s
postgres-ddf7d7dfc-j28cd 0/1 Terminating 0 14s
postgres-ddf7d7dfc-qlxds 0/1 Pending 0 Os
postgres-ddf7d7dfc-qlxds 0/1 Pending 0 Os
postgres-ddf7d7dfc-qlxds 0/1 Pending 0 10s
postgres-ddf7d7dfc-qlxds 0/1 ContainerCreating O 10s
postgres-ddf7d7dfc-qlxds 1/1 Running 0 11s
~C%

> POSTGRES_POD="kubectl get po -n postgres -1 app=postgres -o jsonpath='{.items[0].metadata.name}""

kubectl exec -it -n postgres $POSTGRES_POD -- psql pxdemo -c¢ "select count(*) from pgbench_accounts”
count

5000000

(1 row)

Volume Resize: Automate with Autopilot, Test 2.15

> kubectl get po -n monitor -lapp=prometheus

kubectl get svc -n monitor prometheus

kubectl describe cm -n kube-system autopilot-config

NAME READY STATUS RESTARTS AGE
prometheus-prometheus-kube-prometheus-prometheus-0 2/2 Running 1 28d

Error from server (NotFound): services "prometheus” not found

Name : autopilot-config
Namespace: kube-system
Labels: <none>

Annotations: <none>
Data
config.yaml:
providers:
- name: default
type: prometheus
params: url=http://prometheus-kube-prometheus-prometheus.monitor.svc:9090
Events: <none>
> cat << EOF | kubectl apply -f -
apiVersion: autopilot.libopenstorage.org/vialphal
kind: AutopilotRule
metadata:
name: volume-resize
namespace: kube-system
spec:
selector filters the objects affected by this rule given labels
selector:
matchLabels:

{‘:,) 58

TECHNICAL WHITE PAPER

app: postgres
conditions are the symptoms to evaluate. All conditions are AND'ed
conditions:
volume usage should be less than 50%
expressions:
- key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)”
operator: Gt
values:
- "5bO"
action to perform when condition is true
actions:
- name: openstorage.io.action.volume/resize
params :
resize volume by scalepercentage of current size
scalepercentage: "100"
volume capacity should not exceed 400GiB
maxsize: "100Gi"
EOF
autopilotrule.autopilot.libopenstorage.org/volume-resize created
> kubectl get events --field-selector involvedObject.kind=AutopilotRule,involvedObject.name=volume-
resize --all-namespaces --sort-by .lastTimestamp
NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE
default 1s Normal Transition autopilotrule/volume-resize rule: volume-resize:pvc-
e27159af-a275-476¢c-90f0-3e0d0c681d1l5 transition from Initializing => Normal

Scale Up: Adding Storage Using Autopilot

Starting Capacity = 750GB

> cat << EOF | kubectl apply -f -
apiVersion: autopilot.libopenstorage.org/vialphal
kind: AutopilotRule
metadata:
name: pool-expand
spec:
enforcement: required
conditions are the symptoms to evaluate. All conditions are AND'ed
conditions:
expressions:
pool available capacity less than 90%
- key: "100 * (px_pool_stats_used_bytes/ px_pool_stats_total_bytes)”
operator: Gt
values:
- "o
pool total capacity should not exceed 2TB

{‘:,) 59

TECHNICAL WHITE PAPER

- key: "px_pool_stats_total_bytes/(1024%1024%1024)"
operator: Lt
values:
- "2000"
action to perform when condition is true
actions:
- name: "openstorage.io.action.storagepool/expand”
params :
resize pool by scalepercentage of current size
scalepercentage: "50"
scaletype: "auto”
EOF
> pxctl cluster provision-status
>> Running pxctl on ip-10-28-8-123.ec2.internal

NODE NODE STATUS POOL

POOL STATUS I0_PRIORITY SIZEAVAILABLE USED PROVISIONED ZONE REGION
RACK

f7dfbOf8-322c-45fd-aebb-d3cc0322c398 Up 0 (c4cBdfcb-5069-4cle-abf7-8b8ec7c58a70)
Online HIGH 247 GiB 222 GiB 25 GiB 665 GiB us-east-1b
us-east-1 default

185717ed-734f-464b-af38-0fa9288350cd Up 0 (dcOa3bed-cBec-469c-ad474-64bcde38d65F)
Online HIGH 247 GiB 226 GiB 21 GiB 648 GiB us-east-1la
us-east-1 default

c447d117-2abl-41lec-9b6T-03782334c804 Up 0 (c9867840-73a4-4b3e-9117-0413dfb8bOSF)
Online HIGH 247 GiB 223 GiB 24 GiB 699 GiB us-east-lc
us-east-1 default

Add Storage Node: Test 3.0.2

Status: PX is operational
License: PX-Enterprise extended eval (expires in 59 days)
Node ID: 79bb6bbe-440d-4acl-9ede-096181bbabce
IP: 10.28.28.73
Local Storage Pool: 1 pool
POOL I0_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION
0 HIGH raid0@ 247 GiB 10 GiB Online wus-east-1la us-east-1

Local Storage Devices: 1 device

{‘:,) 60

TECHNICAL WHITE PAPER

Device Path Media Type Size Last-Scan
0:1 /dev/nvmelnlp2 STORAGE_MEDIUM_NVME 247 GiB 03 Jun 21 18:08 UTC
total - 247 GiB

Cache Devices:
* No cache devices

Journal Device:

1 /dev/nvmelnlpl STORAGE_MEDIUM_NVME
Cluster Summary

Cluster ID: px-jenkins-prod

Cluster UUID: eb9ebc27-dde2-4c08-8577-4b92c97e0e26

Scheduler: kubernetes

Nodes: 4 node(s) with storage (4 online), 2 node(s) without storage (2 online)

IP 1D SchedulerNodeName Auth
StorageNode Used Capacity Status StorageStatus Version Kernel
0s
10.28.60.118 f7dfbOf8-322c-45fd-aebb-d3cc0322c¢398 ip-10-28-60-118.ec2.internal
Disabled Yes 25 GiB 247 GiB Online Up 2.7.1.0-

809e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.67.235 c447d117-2abl-41ec-9b6f-03782334c804 ip-10-28-67-235.ec2.internal

Disabled Yes 24 GiB 247 GiB Online Up 2.7.1.0-
809e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2

10.28.28.73 79bbBbbe-440d-4acl-9ede-096181bbabece ip-10-28-28-73.ec2.internal

Disabled Yes 10 GiB 247 GiB Online Up (This node) 2.7.1.0-
809e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2

10.28.8.123 185717ed-734f-464b-af38-0fa9288350cd ip-10-28-8-123.ec2.internal

Disabled Yes 21 GiB 247 GiB Online Up 2.7.1.0-

809e965 5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.72.236 9937ed71-674a-421d-8226-0ae361babebec ip-10-28-72-236.ec2.internal

Disabled No 0B 0 BOnline No Storage 2.7.1.0-809e965
5.4.110-54.182.amzn2.x86_64 Amazon Linux 2

10.28.43.50 2931ea9b-9ade-4c82-8dfd-5dfcc84d4b0Oc ip-10-28-43-50.ec2.internal
Disabled No 0B 0 BOnline No Storage 2.7.1.0-809e965

5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
Global Storage Pool

Total Used : 81 GiB
Total Capacity : 988 GiB
Upgrade - deploy new version of Portworx - Test 3.03
. STC=$(kubectl get stc -n portworx | awk '{if(NR>1)print $1}')
. kubectl patch stc $STC -n portworx --type json --patch '[{"op": "replace”, "path":
" /spec/image”, "value":"portworx/oci-monitor:2.7.1"}]"
Events:
Tupe Reason Age From Message
Normal Pulling 15m kubelet Pulling image "portworx/oci-monitor:2.7.1"
Normal Pulled 15m kubelet Successfully pulled image "portworx/oci-
monitor:2.7.1" in 4.492196242s
Normal Created 15m kubelet Created container portworx
Normal Started 15m kubelet Started container Portworx

(‘:,' 61

TECHNICAL WHITE PAPER

Storage Rebalance: Automated by Autopilot

This is not shown due to the small amount of data in the cluster.

OS Patch: Upgrade OS in Rolling Fashion, Test 3.06

Current state:

EKS » Clusters > px-aws-prod1

px-aws-prod1 @lacanl
(D Anew Kubernetes version is available for this cluster.

Learn more [

(D New AMI release versions are available for 2 Node Groups. x
Learn more [4

Overview Workloads Configuration

Nodes (6) info

| Q, Filter nodes by property or value < 1 >
Node name v Instance type ¥ Node Group ¥ Created v Status ¥
ip-10-28-28-73.ec2.internal r5.xlarge controllers 4 minutes ago ® Ready
ip-10-28-43-50.ec2.internal m5.xlarge agents May 5th 2021 at 9:23 PM ® Ready
ip-10-28-60-118.ec2.internal r5.xlarge controllers May 5th 2021 at 9:22 PM © Ready
ip-10-28-67-235.ecZ.internal r5.xlarge controllers May 5th 2021 at 9:22 PM © Ready
ip-10-28-72-236.ec2.internal m5.xlarge agents May 5th 2021 at 9:23 PM ® Ready
ip-10-28-8-123.ec2.internal m5.xlarge agents May 5th 2021 at 9:23 PM ® Ready

PXCTL Status:

Status: PX is operational
License: PX-Enterprise extended eval (expires in 59 days)
Node ID: f7dfb0f8-322c-45fd-aebb-d3cc0322c398

IP: 10.28.60.118

Local Storage Pool: 1 pool

POOL I0_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE REGION

0 HIGH raid0@ 247 GiB 25 GiB Online wus-east-1b us-east-1
Local Storage Devices: 1 device

Device Path Media Type Size Last-Scan

0:1 /dev/nvmelnlp2 STORAGE_MEDIUM_NVME 247 GiB 03 Jun 21 18:11 UTC
total - 247 GiB

Cache Devices:
* No cache devices

Kvdb Device:

{‘:,) 62

TECHNICAL WHITE PAPER

Cluster

809e965

809e965

809e965

809e965

Device Path

/dev/nvme2nil

Size
150 GiB

* Internal kvdb on this node is using this dedicated kvdb device to store its data.

Journal Device:

1 /dev/nvmelnlpl STORAGE_MEDIUM_NVME

Summary

Cluster ID: px-
eb9ebc27-dde2-4c08-8577-4b92c97e0e26

Cluster UUID:

jenkins-prod

Auth

Kernel

SchedulerNodeName
StorageStatus Version
ip-10-28-60-118.ec2.internal
Online Up (This node) 2.7.1.0-
ip-10-28-67-235.ec2.internal
Online Up 2.7.1.0-
ip-10-28-28-73.ec2.internal
Online Up 2.7.1.0-
ip-10-28-8-123.ec2.internal
Online Up 2.7.1.0-
ip-10-28-72-236.ec2.internal

No Storage 2.7.1.0-809e965

ip-10-28-43-50.ec2.internal

Scheduler: kubernetes
Nodes: 4 node(s) with storage (4 online), 2 node(s) without storage (2 online)
IP 1D

StorageNode Used Capacity Status

0s

10.28.60.118 f7dfbOf8-322c-45fd-aebb-d3cc0322c398
Disabled Yes 25 GiB 247 GiB
5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.67.235 c447d117 -2abl-41lec-9b6T-03782334c804
Disabled Yes 24 GiB 247 GiB
5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.28.73 79bb6bbe-440d-4acl-9ede-096181bbabce
Disabled Yes 10 GiB 247 GiB
5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.8.123 185717ed-734f-464b-af38-0fa9288350cd
Disabled Yes 22 GiB 247 GiB
5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.72.236 9937ed71-674a-421d-8226-0ae361babebce
Disabled No 0B 0 BOnline
5.4.110-54.182.amzn2.x86_64 Amazon Linux 2
10.28.43.50 2931ea9b-9ade-4c82-8dfd-5dfcc84d4b0Oc
Disabled No 0B 0 BOnline

5.4.110-54.182.

Global Storage Pool

Total Used
Total Capacity

amzn2.x86_64 Amazon Linux 2

81 GiB
988 GiB

No Storage 2.7.1.0-809e965

63

TECHNICAL WHITE PAPER

Upgrading Kubernetes via Web Console (Including AMI image to match versions):

EKS Clusters px-aws-prod1
px-aws-prod1 © Actwe |
Overview Workloads

Cluster configuration isfo

Kubernetes version Info Platform version Info
1.20 eks.1
Details Networking Add-ons Authentication Logging Update history Tags
Node Groups (2) info Add Node Group
Group Desired AMI release
. . Launch template Status
name A size version
agents 3 1.20.4-20210526 eksctl-px-aws-prod1-nodegroup-agents (1) %tive
ksctl-px-aws-prod1-nod ~controll
controllers 3 1.20.4-20210526 (E” ctopx-aws-prodi-nacegroup-controtiers gﬂm

Portworx Cluster status after update:

kubectl pxc pxctl status
>> Running pxctl on ip-10-28-81-112.ec2. internal
Status:

: c92a6607-2519-43a7-b38a—42edbdccfeald

IP: 10.28.81.112

Local Storage Pool: 1 pool

POOL IO_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE

Local Storage Devices: 1 device
Device Path Media Type Last-5Scan

Cache Devices:

* No cache devices
Kvdb Device:

Device Path Size

* Intern. vdb on this node is using this dedicated kvdb device to store its data.
Journal D :

Summary

Cluster ID: px-jenkins-prod

Cluster UUT eb9e5c27-dde2-4cBB-8577-4b92cITele2b

Scheduler: kubernetes

Nodes: & node(s) with storage (6 online)

P SchedulerodeName StorageNode Used
Status StorageStatus Version Kernel 0s

Global Storage Pool
Total Used

o 64

TECHNICAL WHITE PAPER

Resiliency Testing:

Node Reboot:

This was difficult to capture as the node went offline and came back online without interrupting operations outside of

Userspace (non-daemonset); pods were rescheduled within seconds on a different node.

Node Shutdown:
Status:
License:
Node ID: 5dfa752e-f366-4fac-b4fe-39554e51244e
IP: 10.28.36.85
Local Storage Pool: 1 pool
POOL I0_PRIORITY RAID_LEVEL USABLE USED

Local Storage Devices: 1 device
Device Path Media Type Size

Cache Devices:
* No cache devices
Journal Device:

Summary

Cluster ID: px-jenkins-prod

Cluster UUID: eb9e5c27-dde2-4c@8-8577-4b92c97e@e26
Scheduler: kubernetes

Nodes: 6 node(s) with storage (5 online)

Ip b0

apacity Status StorageStatus Version Kernel

Global Storage Pool

STATUS ZONE

Last-Scan

SchedulerNodeName StorageNode
0s

AWS Auto-scaling replaced the node based on my definitions and the node was resynced and back online:

Status:
License:
Node ID: 185717ed-734f-464b-af38-0fa9288358cd
IP: 10.28.9.164
Local Storage Pool: 1 pool
POOL IO_PRIORITY RAID_LEVEL USABLE USED

Local Storage Devices: 1 device
Device Path Media Type

Cache Devices:
* No cache devices
Journal Device:

Cluster Summary
Cluster ID: px-jenkins-prod
Cluster UUID: eb9eS5c27-dde2-4cB8-8577-4b92c37eBe26
Scheduler: kubernetes
Nodes: 6 node(s) with storage (6 online)
P D
Status StorageStatus Version Kernel

Global Storage Pool

Disk Failure: (simulation)

echo $NODE

ip-10-28-82-219.ec2.internal

STATUS ZONE

Last-Scan

SchedulerNodeName StorageNode
0s

» NODE="kubectl get pods -1 app=postgres -n postgres —o jsonpath='{.items[@].spec.nodeName}'"

65

TECHNICAL WHITE PAPER

» kubectl get pods -n postgres
NAME READY STATUS RESTARTS AGE

nginx-6598b75bbf-zmsfs 1/1 Running @ 123m
postgres—-ddf7d7dfc-slrsq 1/1 Running @ 123m

Node IP-10-28-82-219 placed into maintenance mode to simulate a disk failure:

Cluster Summary

Cluster ID: px-jenkins-prod

Cluster UUID: eb9e5c27-dde2-4c@8-8577-4b92c97ele26

Scheduler: kubernetes

Nodes: 6 node(s) with storage (5 online)

IP j0) SchedulerNodeName StorageNode Used
apacity Status StorageStatus Version Kernel

10.28.82.219 [= 117 4lec 6f-03 804 i 9.ec2.i rna sa d] Unavailabl
navailable Online (Stora n) 7.1. 5 5.4.117 6.amz Amazon Linux 2

Global Storage Pool

Total Used : 98 GiB

Total Capacity : 1.2 TiB
» kubectl get pod -n postgres -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GA
S
nginx-6598b75bbf-zmsfs 1/1 Running @ 131m 10.28.37.247 ip-10-28-49-141.ec2.internal <none> <none>
postgres—-ddf7d7dfc-slrsqg 1/1 Running @ 131m 10.28.67.18 ip-18-28-82-219.ec2.internal <none> <none>

Note the PostgreSQL pod was not restarted and is still running on the same node, but using the storage replica on another

node. Note also that the database is still available.

» POSTGRES_POD="kubectl get po -n postgres -1 app=postgres -o jsonpath='{.items[0].metadata.name}"’
kubectl exec -it -n postgres $POSTGRES_POD — psql pxdemo —c "select count(*) from pgbench_accounts"
count

5000000
(1 row)

Bringing Portworx on the node back online resynchronizes any changes and marks node available:

>> Running pxctl on ip-16-28-11-87.ec2.internal
Status:
License:
Node ID: 79bb6bbe-440d-4acl-9ede-096181bbabce
IP: 10.28.11.87
Local Storage Pool: 1 pool
POOL I0_PRIORITY RAID_LEVEL USABLE USED STATUS ZONE

Local Storage Devices: 1 device
Device Path Media Type Last-Scan

Cache Devices:

* No cache devices
Kvdb Device:

Device Path Size

* Internal kvdb on this node is using this dedicated kvdb device to store its data.
Journal Device:

Summary

Cluster ID: px-jenkins-prod

Cluster UUID: ebSe5c27-dde2-4c@8-8577-4b92c97ede26

Scheduler: kubernetes

Nodes: 6 node(s) with storage (6 online)

IpP 10 SchedulerNodeName StorageNode Used Capal
Status StorageStatus Version Kernel 0s

Global Storage Pool

o 66

TECHNICAL WHITE PAPER

Note that during this operation the database was able to respond to queries and was not rescheduled to another node:

kubectl get pods -n postgres -1 app=postgres -o wide
READY STATUS RESTARTS AGE IP

NAME
postgres-ddf7d7dfc-slrsq 1/1

NOMINATED NODE READINESS GATES
Running @ 138m 10.28.67.18

ODE
ip-10-28-82-219.ec2.internal <none> <none>

purestorage.com 800.379.PURE 9 @ Q ﬂ G O PURESTORAGE’

http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
https://www.youtube.com/user/purestorage
http://purestorage.com/
tel:8003797873
https://twitter.com/PureStorage
http://purestorage.com/
tel:8003797873
https://www.linkedin.com/company/pure-storage/
http://purestorage.com/
tel:8003797873
https://www.facebook.com/PureStorage/
http://purestorage.com/
tel:8003797873
mailto:info@purestorage.com
http://purestorage.com/
tel:8003797873
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents

	About Jenkins
	Introduction
	Reference Architecture Diagram
	Prerequisites
	AWS EC2 Instance Sizing
	Utilities

	Configuring AWS EKS and Portworx
	Installing and Configuring Portworx on Amazon EKS
	Install the Portworx Operator

	Prepare Cluster for Installing Jenkins
	Controller StorageClass
	Agent StorageClass
	AutoPilot Rules (Optional)

	Deploy Jenkins to Your Portworx-enabled EKS Cluster
	Deploy and Configure a Disaster Recovery Site
	Prepare Your AWS Cloud for Disaster Recovery
	Create a Cluster Pair and Admin Namespace

	Install and Configure PX-Backup
	Installation
	Configure PX-Backup

	Configure Your First Backup Job
	Solution Testing and Validation
	Functional Testing: Jenkins Controller HA Failover Test
	Jenkins HA Failover
	Portworx Backup and Recovery UI
	Backup and Restore Jenkins
	Validate DR Replication Failover Preparedness

	Conclusion
	Appendix: Additional Testing
	Volume Encryption: Cluster-Wide, Test 2.12
	Volume Encryption: Volume Granular Encryption, Test 2.13
	Deploy Jenkins Using Encryption
	PostgreSQL RWO
	Failover Testing: 2.04, Postgres
	Read Write Many: Nginix Deployment, 2.05 and 2.06
	Volume Snapshot: Test 2.14
	Volume Snapshot Restore: Test 2.15
	Volume Resize: Automate with Autopilot, Test 2.15
	Scale Up: Adding Storage Using Autopilot
	Add Storage Node: Test 3.0.2
	Storage Rebalance: Automated by Autopilot
	OS Patch: Upgrade OS in Rolling Fashion, Test 3.06
	Resiliency Testing:

