

TECHNICAL WHITE PAPER

Scalability and High Data
Retention with Prometheus and
Thanos on FlashBlade
High availability for Prometheus time-series data using ObjectStore.

TECHNICAL WHITE PAPER

 2

Contents
Introduction ..3

Thanos and FlashBlade ...3

Prerequisite for Prometheus and Thanos installation ...4

Prometheus and Thanos Setup ... 7

Conclusion .. 15

About the Author .. 16

TECHNICAL WHITE PAPER

 3

Introduction

Single-instance Prometheus servers are becoming more popular across various business and industry
verticals. Organizations use them as a standard monitoring solution across many heterogeneous
endpoints, including for hardware infrastructure. Prometheus allows admins and end-users seamless
access to monitor and visualize relevant information across different platforms based on rules and
policies without going through a massive learning curve from different vendors.

With the growing Prometheus footprint, long-term retention of historical data is gaining more attention.
Admins and end-users in cross-functional teams require a global view of all endpoints with the
appropriate role-based access rules and policies. High resiliency is required when a single-instance
Prometheus server, exporter, or application crashes, and a gap in gathering the metrics occurs until
the server and the application come back online. PromQL queries lose the metrics data during the gap
when the server is offline.

Like other hardware vendors, Pure Storage® has a Pure Exporter that allows Prometheus to monitor and scrape metrics from

FlashArray™ and FlashBlade® storage endpoints. You can configure single-instance Prometheus and Grafana on Pure Storage

and monitor FlashArray and FlashBlade for other workloads running on these data platforms.

Thanos and FlashBlade

Thanos is a CNCF project in the incubation stage which runs as a sidecar to the Prometheus server. Thanos addresses the

challenges mentioned above with various components like Sidecar, Query, Store, Compact, Ruler, and many more. Figure 1

illustrates how the different functional Thanos components are connected and configured on FlashBlade.

Figure 1. Prometheus Thanos functional layout

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://github.com/PureStorage-OpenConnect/pure-exporter
https://www.purestorage.com/products/nvme/flasharray-x.html
https://www.purestorage.com/products/file-and-object/flashblade.html
https://support.purestorage.com/Solutions/Kubernetes/Monitoring%2C_Alerting%2C_and_Visualization_with_Prometheus_and_Grafana_with_Pure_Storage
https://thanos.io/v0.19/thanos/getting-started.md/
https://www.cncf.io/projects/
https://thanos.io/v0.19/components/compact.md/

TECHNICAL WHITE PAPER

 4

The Prometheus database (Promdb) is configured over NFS, and the long-term storage for historical data is stored on an

object store bucket in the same FlashBlade. Configuring the Prometheus and Thanos components on FlashBlade has the

following advantages:

• FlashBlade supports both files and Amazon S3-compatible object stores.

• FlashBlade provides POSIX-compliant NFS, backed with flash storage that eliminates write amplification with capacity and

performance scalability required by every Prometheus and Thanos instance configured in the environment.

• Configures the Thanos Store Gateway on the NFS shares as the PromDB, allowing it to grow and shrink the cache for

indexed time series data.

• FlashBlade provides a high data reduction of 2.5:1 for the PromDB over NFS and up to 4:1 for the historical data in object

store buckets.

• FlashBlade can also replicate the object store buckets containing historical data to AWS S3 for extended retention time

periods.

This paper provides detailed steps to configure the different Thanos components along with the changes required to the

Prometheus configuration. (Explore the steps to set up and configure a single instance Prometheus and Pure Exporter.) The

rest of this paper assumes that at least two single instances of Prometheus are running in isolation. Each of the Prometheus

Servers could have its own set of endpoints to monitor.

Prerequisites for Prometheus and Thanos Installation

Pure Exporter is used to monitor and visualize array level metrics from different FlashArray and FlashBlade endpoints by two

different Prometheus servers. In this paper, the two Prometheus servers use external labels with replica names of

“Prometheus-1” and “Prometheus-2,” respectively.

The following prerequisites are required before starting to configure Prometheus and Thanos:

1. DNS entries for the Prometheus servers and the various Thanos components should be set as shown in the table below.

https://support.purestorage.com/Solutions/Kubernetes/Monitoring%2C_Alerting%2C_and_Visualization_with_Prometheus_and_Grafana_with_Pure_Storage

TECHNICAL WHITE PAPER

 5

Prometheus-1 <10.21.152.65>

[root@sn1-r620-a04-05 prometheus]# nslookup 10.21.152.65

65.152.21.10.in-addr.arpa name = ruler-1.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = sidecar-1.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = compact-1.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = sn1-r620-a04-05.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = prometheus-1.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = pure-exporter-1.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = store-1.puretec.purestorage.com.

65.152.21.10.in-addr.arpa name = query-1.puretec.purestorage.com.

Prometheus-2 <10.21.236.116>

[root@sn1-r720-g09-19 ~]# nslookup 10.21.236.116

116.236.21.10.in-addr.arpa name = pure-exporter-2.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = store-2.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = query-2.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = ruler-2.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = sidecar-2.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = compact-2.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = sn1-r720-g09-19.puretec.purestorage.com.

116.236.21.10.in-addr.arpa name = prometheus-2.puretec.purestorage.com.

2. The following ports should be open for the HTTP and gRPC communication between the Prometheus and the Thanos

components.

Component Interface Ports

Sidecar gRPC 10901

Sidecar HTTP 10902

Query gRPC 10903

Query HTTP 10904

Store gRPC 10905

Store HTTP 10906

Rule gRPC 10910

Rule HTTP 10911

Compact HTTP 10912

TECHNICAL WHITE PAPER

 6

3. The following NFS mounts (if this is a first-time Prometheus install) and object store buckets need to be created. Create

promDB and promDB2 file systems on FlashBlade.

Both the promDB and promDB2 file systems on FlashBlade need to be mounted on /var/lib/prometheus on Linux hosts with

“vers=3” and “sync” as the mount options.

10.21.236.101:/promDB on /var/lib/prometheus type nfs

(rw,relatime,sync,vers=3,rsize=524288,wsize=524288,namlen=255,hard,proto=tcp,timeo=600,retrans=2,

sec=sys,mountaddr=10.21.236.101,mountvers=3,mountport=2049,mountproto=tcp,local_lock=none,addr=10

.21.236.101)

4. The objectstore buckets for Thanos Store and Ruler need to be created on the same FlashBlade. The bucket names are

“store” and “ruler,” respectively.

Figure 2. Thanos object store.

5. The Pure Exporter should be running in Docker containers in Prometheus-1 and Prometheus-2 servers, respectively.

Prometheus-1 Server

[root@sn1-r620-a04-05 ~]# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

028d9b70e254 quay.io/purestorage/pure-exporter:1.2.3 "gunicorn pure_expor…" 3 weeks ago Up 3 weeks 0.0.0.0:9491->9491/tcp pure-exporter-1

Prometheus-2 Server

[root@sn1-r720-g09-19 ~]# docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

459b8c5021c7 quay.io/purestorage/pure-exporter:1.2.3 "gunicorn pure_expor…" 3 weeks ago Up 5 days 0.0.0.0:9491->9491/tcp pure-exporter-2

https://github.com/PureStorage-OpenConnect/pure-exporter

TECHNICAL WHITE PAPER

 7

6. GOlang needs to be installed and configured on the Prometheus servers.

[root@sn1-r720-g09-19 ~]# wget https://dl.google.com/go/go1.15.5.linux-amd64.tar.gz

[root@sn1-r720-g09-19 ~]# tar -C /usr/local -xzf go1.15.5.linux-amd64.tar.gz

[root@sn1-r720-g09-19 ~]# export PATH=$PATH:/usr/local/go/bin

[root@sn1-r720-g09-19 ~]# go version

go version go1.15.5 linux/amd64

[root@sn1-r720-g09-19 ~]# vi .bash_profile

[root@sn1-r720-g09-19 ~]# source ~/.bash_profile

[root@sn1-r720-g09-19 ~]# go version

go version go1.15.5 linux/amd64

[root@sn1-r720-g09-19 ~]#

Prometheus and Thanos Setup

For best practices and prerequisites for installing and configuring Prometheus, please see this white paper. At the time of

writing this paper, Thanos v0.17.2 was used for this documentation. Note that Thanos must be downloaded and installed in

both the Prometheus servers.

[root@sn1-r720-g09-19 bin]# wget https://github.com/thanos-

io/thanos/releases/download/v0.17.2/thanos-0.17.2.linux-amd64.tar.gz

[root@sn1-r720-g09-19 ~]# tar xvzf thanos-0.17.2.linux-amd64.tar.gz

thanos-0.17.2.linux-amd64/

thanos-0.17.2.linux-amd64/thanos

[root@sn1-r720-g09-19 ~]# mv thanos-0.17.2.linux-amd64/thanos /usr/bin/thanos

[root@sn1-r720-g09-19 bin]# thanos --version

thanos, version 0.17.2 (branch: HEAD, revision: 37e6ef61566c7c70793ba6d128f00c4c66cb2402)

 build user: root@92283ccb0bc0

 build date: 20201208-10:00:57

 go version: go1.15

 platform: linux/amd64

[root@sn1-r720-g09-19 bin]#

Sidecar is the first Thanos component configured as a service on both the Prometheus-1 and Prometheus-2 servers. Use the

ports listed above for the sidecar.service file in the /etc/systemd/system location.

In the below table, the --objstore.config file points to the location where the “store” bucket information is held.

https://support.purestorage.com/Solutions/Kubernetes/Monitoring%2C_Alerting%2C_and_Visualization_with_Prometheus_and_Grafana_with_Pure_Storage
https://github.com/thanos-io/thanos/releases/download/v0.17.2/thanos-0.17.2.linux-amd64.tar.gz
https://github.com/thanos-io/thanos/releases/download/v0.17.2/thanos-0.17.2.linux-amd64.tar.gz

TECHNICAL WHITE PAPER

 8

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat sidecar.service

[Unit]

Description=Prometheus

Wants=network-online.target

After=network-online.target

[Service]

User=prometheus

Group=prometheus

Type=simple

ExecStart=/bin/thanos sidecar \

 --prometheus.url=http://prometheus-1:9090 \

 --grpc-address=prometheus-1:10901 \

 --http-address=prometheus-1:10902 \

 --tsdb.path /var/lib/prometheus/ \

 --objstore.config-file

/etc/prometheus/bucket.yml

[Install]

WantedBy=multi-user.target

[root@sn1-r620-a04-05 system]#

[root@sn1-r720-g09-19 system]# cat sidecar.service

[Unit]

Description=Prometheus

Wants=network-online.target

After=network-online.target

[Service]

User=prometheus

Group=prometheus

Type=simple

ExecStart=/bin/thanos sidecar \

 --prometheus.url=http://prometheus-2:9090 \

 --grpc-address=prometheus-2:10901 \

 --http-address=prometheus-2:10902 \

 --tsdb.path /var/lib/prometheus/ \

 --objstore.config-file /etc/prometheus/bucket.yml

[Install]

WantedBy=multi-user.target

[root@sn1-r720-g09-19 system]#

The following table provides the details of the “store” bucket created on the FlashBlade. It consists of the bucket name,

endpoint (data VIP of the FlashBlade), access key, and the secret key of the bucket. Both the Prometheus servers are pointing

to the same “store” bucket on FlashBlade but using different data VIPs.

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat

/etc/prometheus/bucket.yml

type: S3

config:

 bucket: store

 endpoint: 10.21.236.202

 region: local

 access_key: <paste the access_key from

the bucket>

 insecure: false

 signature_version2: false

 secret_key: : <paste the secret_key from

the bucket>

 put_user_metadata: {}

 http_config:

 idle_conn_timeout: 1m30s

[root@sn1-r720-g09-19 system]# cat

/etc/prometheus/bucket.yml

type: S3

config:

 bucket: store

 endpoint: 10.21.236.203

 region: local

 access_key: <paste the access_key from the

bucket>

 insecure: false

 signature_version2: false

 secret_key: : <paste the secret_key from the

bucket>

 put_user_metadata: {}

 http_config:

 idle_conn_timeout: 1m30s

TECHNICAL WHITE PAPER

 9

 response_header_timeout: 2m

 insecure_skip_verify: true

 trace:

 enable: false

 list_objects_version: ""

 part_size: 134217728

[root@sn1-r620-a04-05 system]#

 response_header_timeout: 2m

 insecure_skip_verify: true

 trace:

 enable: false

 list_objects_version: ""

 part_size: 134217728

[root@sn1-r720-g09-19 system]#

The prometheus.yaml file needs to be updated with an external label and the replica name should be defined to identify the

location of two Prometheus servers. The time series data is identified from the replicas’ labels.

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat

/etc/prometheus/prometheus.yml

global:

 scrape_timeout: 1m

 external_labels:

 cluster: us1

 replica: prometheus-1

rule_files:

 - alert.rules.yml

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets: ['prometheus-

1:9090','prometheus-2:9090']

 - job_name: 'sidecar'

 static_configs:

 - targets: ['prometheus-

1:10902','prometheus-2:10902']

[root@sn1-r720-g09-19 system]# cat

/etc/prometheus/prometheus.yml

global:

 scrape_timeout: 1m

 external_labels:

 cluster: us2

 replica: prometheus-2

rule_files:

 - alert.rules.yml

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets: ['prometheus-

2:9090','prometheus-1:9090']

 - job_name: 'sidecar'

 static_configs:

 - targets: ['prometheus-

1:10902','prometheus-2:10902']

The prometheus.yaml file must be updated with an external label and the replica name has to be defined to identify the

location of two Prometheus servers. The time series data is identified from the replicas’ labels.

TECHNICAL WHITE PAPER

 10

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat

/etc/prometheus/prometheus.yml

global:

 scrape_timeout: 1m

 external_labels:

 cluster: us1

 replica: prometheus-1

rule_files:

 - alert.rules.yml

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets: ['prometheus-

1:9090','prometheus-2:9090']

 - job_name: 'sidecar'

 static_configs:

 - targets: ['prometheus-

1:10902','prometheus-2:10902']

[root@sn1-r720-g09-19 system]# cat

/etc/prometheus/prometheus.yml

global:

 scrape_timeout: 1m

 external_labels:

 cluster: us2

 replica: prometheus-2

rule_files:

 - alert.rules.yml

scrape_configs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_configs:

 - targets: ['prometheus-

2:9090','prometheus-1:9090']

 - job_name: 'sidecar'

 static_configs:

 - targets: ['prometheus-

1:10902','prometheus-2:10902']

After updating the prometheus.yaml and configuring the sidecar.service files both services need to restart/start/enable on

both Prometheus servers.

systemctl daemon-reload

systemctl restart prometheus

systemctl status prometheus -l

systemctl start sidecar

systemctl enable sidecar

systemctl status sidecar -l

Next, configure the Thanos store or store gateway on both the Prometheus servers. Create Store-1 and Store-2 directories

under /var/lib/prometheus NFS share for the Prometheus-1 and Prometheus-2 servers, respectively.

Prometheus-1 Prometheus-2

mkdir /var/lib/prometheus/store-1/ mkdir /var/lib/prometheus/store-2/

The /var/lib/prometheus/store-1 is used as the path to the data-dir where the initial time series data is stored before being

written to the object store bucket store on the FlashBlade. The bucket information is also in the following store.service file

TECHNICAL WHITE PAPER

 11

where the historical data will be written for a longer retention period. The store.service file is created in the

/etc/systemd/system location.

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat store.service

[Unit]

Description=Thnaos Store

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos store \

 --data-dir=/var/lib/prometheus/store-1/ \

 --objstore.config-

file=/etc/prometheus/bucket.yml \

 --http-address=localhost:10906 \

 --grpc-address=store-1:10905

[Install]

WantedBy=multi-user.target

[root@sn1-r620-a04-05 system]#

[root@sn1-r720-g09-19 system]# cat store.service

[Unit]

Description=Thnaos Store

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos store \

 --data-dir=/var/lib/prometheus/store-2/ \

 --objstore.config-

file=/etc/prometheus/bucket.yml \

 --http-address=localhost:10906 \

 --grpc-address=store-2:10905

[Install]

WantedBy=multi-user.target

[root@sn1-r720-g09-19 system]#

The store.service has to be started on both the Prometheus servers:

systemctl daemon-reload

systemctl start store

systemctl enable store

systemctl status store -l

The next component to configure is the Thanos query. The query points to both Store-1 and Store-2 for high availability and

resiliency purposes. We recommend that you create a query service on both the Prometheus servers for high availability

reasons in the /etc/systemd/system location. Either one of the queries can be used as a data source to Grafana, which

provides a global view of all the endpoints that are monitored by each of Prometheus servers respectively.

TECHNICAL WHITE PAPER

 12

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat

query.service

[Unit]

Description=Thnaos Query

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos query \

 --http-address=query-1:10904 \

 --grpc-address=query-1:10903 \

 --store=store-1:10901 \

 --store=store-2:10901 \

 --query.replica-label=prometheus-1

[Install]

WantedBy=multi-user.target

[root@sn1-r620-a04-05 system]#

[root@sn1-r720-g09-19 system]# cat

query.service

[Unit]

Description=Thnaos Query

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos query \

 --http-address=query-2:10904 \

 --grpc-address=query-2:10903 \

 --store=store-1:10901 \

 --store=store-2:10901 \

 --query.replica-label prometheus-2

[Install]

WantedBy=multi-user.target

[root@sn1-r720-g09-19 system]#

In an earlier section, external labels with the replica names were configured for both Prometheus clusters. The query merges

the time series data from different external labels into one single dataset. If the Prometheus server or exporter or application

goes offline, the query will hide the data collection gaps from the impacted Prometheus server. For more information with

examples, refer to Thanos documentation.

The query service needs to be started on both the Prometheus servers:

systemctl daemon-reload

systemctl start query

systemctl enable query

systemctl status query -l

Thanos Compact is another service that aggregates indexed time series data before writing to the object store bucket store

on FlashBlade. We recommended that you create a “compact” directory under the /var/lib/prometheus NFS share as the

default --date-dir location on both Prometheus servers for the compact to write the data. The compact is also responsible for

downsampling the large metric datasets into smaller chunks.

Prometheus-1 Prometheus-2

mkdir /var/lib/prometheus/compact-1/ mkdir /var/lib/prometheus/compact-2/

https://thanos.io/v0.19/components/query.md/

TECHNICAL WHITE PAPER

 13

The compact service must be configured with the --data-dir path and the store bucket location details.

Prometheus-1 Prometheus-2

[root@sn1-r620-a04-05 system]# cat compact.service

[Unit]

Description=Thanos compact

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos compact \

 --data-dir=/var/lib/prometheus/compact-1/ \

 --objstore.config-

file=/etc/prometheus/bucket.yml \

 --http-address=compact-1:10912

[Install]

WantedBy=multi-user.target

[root@sn1-r620-a04-05 system]#

[root@sn1-r620-a04-05 system]# cat compact.service

[Unit]

Description=Thanos compact

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos compact \

 --data-dir=/var/lib/prometheus/compact-2/ \

 --objstore.config-

file=/etc/prometheus/bucket.yml \

 --http-address=compact-1:10912

[Install]

WantedBy=multi-user.target

[root@sn1-r620-a04-05 system]#

The compact service can then be started on both the Prometheus servers.

systemctl daemon-reload

systemctl start compact

systemctl enable compact

systemctl status compact -l

The final piece to this puzzle is to configure the Thanos ruler. We recommended configuring the ruler on both Prometheus

servers for high availability but for this paper, a single ruler is created on Prometheus-1.

Create a new “--data-dir” directory in the /var/lib/prometheus NFS share location for the most recent and active rules and

alerts and continuing to write the historical data to the “ruler” bucket on FlashBlade.

The ruler consolidates the rules to combine the metrics data and condition-based alerts into one location. It is recommended

to create a new objectstore bucket “ruler” on FlashBlade that stores all the rules and the alerts.

Prometheus-1

mkdir /var/lib/prometheus/ruler-1/

TECHNICAL WHITE PAPER

 14

[root@sn1-r620-a04-05 system]# cat /etc/prometheus/bucket2.yml

type: S3

config:

 bucket: ruler

 endpoint: 10.21.236.201

 region: local

 access_key: <paste the access_key from the bucket>

 insecure: false

 signature_version2: false

 secret_key: <paste the secret_key from the bucket>

 put_user_metadata: {}

 http_config:

 idle_conn_timeout: 1m30s

 response_header_timeout: 2m

 insecure_skip_verify: true

 trace:

 enable: false

 list_objects_version: ""

part_size: 134217728

[root@sn1-r620-a04-05 system]#

The ruler service is configured with the “--objstore.config-file” pointing to the new bucket “ruler” and eventually starts the

service on Prometheus-1 server.

Prometheus-1

[root@sn1-r620-a04-05 system]# cat ruler.service

[Unit]

Description=Thnaos Ruler

Wants=network-online.target

After=network-online.target

[Service]

User=root

Group=root

Type=simple

ExecStart=/bin/thanos rule \

 --data-dir="/var/lib/prometheus/ruler-1" \

 --eval-interval=30s \

 --rule-file=/etc/prometheus/alert.rules.yml \

 --alert.query-url=http://0.0.0.0:9090 \

 --alertmanagers.url=http://localhost:9093 \

TECHNICAL WHITE PAPER

 15

 --http-address=ruler-1:10911 \

 --grpc-address=0.0.0.0:10910 \

 --query=http://query-1:10904 \

 --query=http://query-2:10904 \

 --objstore.config-file=/etc/prometheus/bucket2.yml \

 --label 'monitor_cluster="us1"' \

 --label 'replica="prometheus-1"'

[Install]

WantedBy=multi-user.target

[root@sn1-r620-a04-05 system]#

ystemctl daemon-reload

systemctl start ruler

systemctl enable ruler

systemctl status ruler -l

Conclusion

This completes the configuration of all Thanos components. Services will now run on both Prometheus servers. Either Query-1

or Query-2 can be used as the data source to Grafana. Shared resources for promDB, promDB2, and “--data-dir” paths on the

/var/lib/prometheus NFS shares provide the resilience and elasticity to scale capacity as the metrics data grows. The metrics

data size depends on the number of endpoints scraped and the number of metrics gathered from each endpoint. Data

reduction from 2.5:1 up to 4:1 between the NFS shares and the buckets enables Prometheus to have a long data retention time

with a smaller data footprint.

TECHNICAL WHITE PAPER

purestorage.com 800.379.PURE

PS2054-01 04/2021

©2020 Pure Storage, the Pure P Logo, and the marks on the Pure Trademark List at https://www.purestorage.com/legal/productenduserinfo.html are trademarks of
Pure Storage, Inc. Other names are trademarks of their respective owners. Use of Pure Storage Products and Programs are covered by End User Agreements, IP,
and other terms, available at: https://www.purestorage.com/legal/productenduserinfo.html and https://www.purestorage.com/patents

The Pure Storage products and programs described in this documentation are distributed under a license agreement restricting the use, copying, distribution, and
decompilation/reverse engineering of the products. No part of this documentation may be reproduced in any form by any means without prior written authorization
from Pure Storage, Inc. and its licensors, if any. Pure Storage may make improvements and/or changes in the Pure Storage products and/or the programs described
in this documentation at any time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO
CHANGE WITHOUT NOTICE.

Pure Storage, Inc.
650 Castro Street, #400
Mountain View, CA 94041

About the Author

Bikash Roy Choudhury is a technical director at Pure Storage. He is responsible for designing and architecting solutions with

EDA/HPC and SWDev/DevOps workflows relevant across industry verticals including high tech, financial services, gaming,

social media, and web-based organizations in Private/Hybrid/Public Cloud environments. He has also worked on validating

solutions with Rancher/TKG/Kubernetes on Portworx, GitLab, Jenkins, JFrog Artifactory, Prometheus/Grafana, IBM Cloud

Private and Perforce using RESTful APIs and integrating them with data platforms in private, hybrid, and public clouds. In his

current role, Bikash drives integrations with strategic DevOps partners like Rancher, D2iQ/Konvoy, VMWare, Perforce,

Cloudbees, and JFrog.

http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
tel:8003797873
http://purestorage.com/
tel:8003797873
http://purestorage.com/
tel:8003797873
https://www.youtube.com/user/purestorage
http://purestorage.com/
tel:8003797873
https://twitter.com/PureStorage
http://purestorage.com/
tel:8003797873
https://www.linkedin.com/company/pure-storage/
http://purestorage.com/
tel:8003797873
https://www.facebook.com/PureStorage/
http://purestorage.com/
tel:8003797873
mailto:info@purestorage.com
http://purestorage.com/
tel:8003797873
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents

	Introduction
	Thanos and FlashBlade
	Prerequisites for Prometheus and Thanos Installation
	Prometheus and Thanos Setup
	Conclusion
	About the Author

