Skip to Content
38:14 Webセミナー

Applying Video Understanding and RAG in Surveillance

In this TechTalks session, we’ll explore RAG, a method of improving the accuracy and relevance of inference capability of LLMs, the evolution of multimodal LLMs, and how they can summarize and extract insights close to real time.
本 Web セミナーが配信された日 2024/07/25
最初の 5 分間はどなたでもご視聴可能です。5 分後に表示される簡単なフォームにご記入いただくことで、最後までご覧になれます。
  • AI(人工知能)
  • Tech Talks

Calvin Nieh

Senior Solutions Marketing Manager AI, Pure Storage

Philip Ninan

AI Solutions Product Manager, Pure Storage

Tom Sells

Field Business Development Principal, Pure Storage

Video surveillance cameras are leveraged in the public sector for a variety of use cases like public safety and law enforcement, urban planning, public health, and more. Generative AI, using retrieval augmented generation (RAG) and pre-trained large language models (LLMs), can be used to analyze video data from these public sources. These technologies can enable the summarization and querying of this data to be much faster, more accurate, and more cost efficient than manual analysis.  

In this TechTalks session, we’ll explore RAG, a method of improving the accuracy and relevance of inference capability of LLMs, the evolution of multimodal LLMs, and how they can summarize and extract insights close to real time.

Join us as our experts discuss: 

  • How multimodal LLMs makes extraction of insights from video much simpler and faster

  • Overall trends shifting from text to video for better precision of answers

  • Capacity and performance requirements for video data sets 

  • Why camera companies stand to benefit from the advent of RAG

続けて視聴される方へ
ご視聴いただきありがとうございます。下記のフォームにご記入いただくことで、最後までご覧になれます。
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
このブラウザは現在サポートされていません。

古いブラウザには、セキュリティ・リスクが存在する場合があります。ピュア・ストレージの Web サイトをより快適にご利用いただけるよう、最新のブラウザにアップデートしてください。