機械学習とは、明示的なプログラムなしで、学習用データを通じて向上可能なコンピュータ・アルゴリズムを処理する人工知能のサブフィールドです。人間並みの正確な人工知能の実現に向けた最も有望な道筋として広く認められています。
機械学習アルゴリズムは3つのカテゴリに大別できます。
以下に、機械学習と深層学習の概要、ならびにこれら2つの概念の相違点を説明します。
深層学習は機械学習の一種で、人工ニューラル・ネットワークを使って人間並みの知能に近づけるものです。人間の脳の神経細胞(ニューロン)から発想を得て、深層学習ではグラフ理論を使い、アルゴリズムの重み付けをノードとエッジの層に指定します。深層学習アルゴリズムは、画像や言語のような非構造化データの処理に優れています。
実用上、「深層」に分類されるニューラル・ネットワークは、その構造の基礎となるパーセプトロンの入力層と出力層の間に中間層を含む必要があります。これらの層は、外部層と結合していないため「隠れ層」と見なされます。深層学習の構成例は次のとおりです。
Pure1® のセルフサービス・インスタンスによる FlashBlade™ の管理を通じて、ネイティブなスケールアウトが可能なファイル/オブジェクト・ストレージの先進的機能をお試しいただけます。
深層学習は機械学習の一部と見なされています。深層学習アルゴリズムを他の機械学習アルゴリズムと区別する主な要因は、人工ニューラル・ネットワークの使用です。ニューラル・ネットワークを「深層」にする主要な特徴は、基本的なパーセプトロンを構成する入力層と出力層の間に中間層が存在することです。
非構造化データの処理能力を有しているならば、深層学習アルゴリズムは当該作業に最適です。これにより、教師なし学習および強化学習では、他の機械学習アルゴリズムに勝るメリットを深層学習に与えてくれます。近年、AIの進歩は、処理能力とデータ・ストレージの向上に伴う深層学習ニューラル・ネットワークの存立可能性の上昇から多大な恩恵を受けています。
ピュア・ストレージはAIの世界を利活用、支援どちらも行うよう一義的に位置付けられています。深層学習ニューラル・ネットワークには、大型と高速の両面を満たすデータが欠かせません。ピュア・ストレージのオールフラッシュ・ストレージ・ソリューションは、100% NVMeフラッシュ・メモリのパフォーマンスとAI駆動の予測分析を組み合わせて、モダン・データ・エクスペリエンス(Modern Data Experience™)を実現します。ピュア・ストレージの導入により、次のことが可能になります。
ピュア・ストレージ製品および認定についてのご質問・ご相談を承っております。ご連絡をお待ちしております。
ライブデモのご用命を承っております。ピュアがいかにしてデータを成果に変えるお手伝いができるかをご説明します。
電話: 03-4563-7443
メディア: pr-japan@purestorage.com
ピュア・ストレージ・ジャパン株式会社
〒100-0014 東京都千代田区永田町 2 丁目 10-3 東急キャピトルタワー 12 階
03-4563-7443(総合案内)